Forgot password?
 Register account
View 650|Reply 2

[几何] 塞瓦巢定理(赛瓦巢定理)

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-16 05:35 |Read mode
Last edited by hbghlyj 2021-6-16 15:26XYZ是ABC的塞瓦三角形.DEF是XYZ的塞瓦三角形.则DEF是ABC的塞瓦三角形.
证明
由角元塞瓦定理,要证明$\frac{\sin BAD}{\sin CAD}\cdot \frac{\sin ACF}{\sin BCF}\cdot \frac{\sin EBC}{\sin EBA}=1$.
设$\angle ZDA=\theta$.由正弦定理$\frac{\sin BAD}{ZD}=\frac{\sin\theta}{ZA}\implies \sin BAD=\frac{ZD}{ZA}\sin \theta$.
又$\frac{\sin CAD}{YD}=\frac{\sin (180-\theta)}{YA}\implies \sin CAD=\frac{YD}{YA}\sin (180-\theta)$.
于是,$\frac{\sin BAD}{\sin CAD}=\frac{\frac{ZD}{ZA}\sin \theta}{\frac{YD}{YA}\sin (180-\theta)}=\frac{ZD}{YD}\cdot \frac{YA}{ZA}$.
对$\frac{\sin ACF}{\sin BCF}$和$\frac{\sin EBC}{\sin EBA}$有类似的等式成立,故只需证
\[\frac{ZD}{YD}\cdot \frac{YA}{ZA} \cdot \frac{XE}{ZE}\cdot \frac{ZB}{XB}\cdot \frac{YF}{XF}\cdot \frac{XC}{YC}=1\]
这可对ABC和XYZ直接应用Ceva定理得出,所以证完了.
802628f8a3b3b5b0362d2e32555ec130237e51.png
原文链接

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-16 05:41

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-17 12:27
又见5000的70楼
(1)(赛瓦巢定理)△ABC和任意两点P,Q,设P的反赛瓦三角形为$P_AP_BP_C$,设$QP_A,QP_B,QP_C$分别交DC,CA.AD于$R_A,R_B,R_C$,则$AR_A,BR_B,CR_C$共点于cevapoint(P,Q)
证:设Q的反赛三角形$△Q_AQ_BQ_C$,设P,Q的双反赛瓦锥线为$\Gamma$,重新定义$R_A=PQ_A∩QP_A$先(用同一法)证明$R_A$在BC上,注意$APP_A,AQQ_A$共线,由1.3.1(8)(Brocard定理)$R_A$在A(关于$\Gamma$)的极线上.结合2.3.1(2)故$R_A$在BC上.
设R=cevapoint(P,Q),接下来证明$ARR_A$共线
对$\Gamma$上六点$ PPQ_AQQP_A$用帕斯卡定理
$PP\cap QQ=R$(PP,QQ表示切线),$P Q _ { A }\cap Q P _ { A } = R _ { A } , Q A\cap P _ { A } P = A $.这三点共线.同理$BRR_B,CRR_C$分别共线,证毕.
注:由于 cevapoint(P,Q)= cevapoint(Q,P),因此在该定理中调换P,Q仍得到相同的共点.
反之,根据该定理不难构造出Cevaconjugate(R,P)

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit