Forgot password?
 Register account
View 689|Reply 3

[几何] 全等三角形 中垂线 共点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-22 18:13 |Read mode
△EAB≅△ECD,△FAB≅△FDC.
AE交BF于G.AF交BE于H.CF交DE于I.CE交DF于J.
求证AJ,BI,CG,DH共点.
毛病 1:36:00 AM说:
梅涅劳斯和正弦定理可证
如何证呢,我还没有弄出来
QQ图片20210622181245.jpg

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-26 04:46
Last edited by 乌贼 2021-6-26 04:53如图: 211.png
连接$ AJ,GC $交于$ K $点。易证$ GECF $四点共圆及$ AEJF $四点共圆。有\[ \angle FGC=\angle FEC=\angle FAJ \]即$ FAGK $四点共圆 及 $ FKJC $四点共圆。得\[ \triangle AFE\sim \triangle KFC\\\riff \dfrac{KC}{CF}=\dfrac{AE}{EF}\riff \dfrac{KG}{BF}=\dfrac{EC}{EF}\]所以\[ \triangle ECK\sim \triangle EFB\\\riff \angle BEF=\angle KEC\\\riff\begin{cases} \angle BEK=\angle FEC=\angle FGC \\\angle KEI=\angle AEF=\angle KCF \end{cases} \]故$ GEKB $四点共圆及$ EKCI $四点共圆。因此

\begin{cases} \angle EBK=\angle EGK=\angle EFC=\angle AFK \\\angle KEI=\angle KCF=\angle KJF \end{cases}所以$ HBKF $四点共圆及$ KEDJ $四点共圆。再得\[ \angle KDJ=\angle KEC=\angle KIF \]也就是$ FKDI $四点共圆。
综上有\[ \angle DKJ=\angle DEJ=\angle AEB=\angle GKB=\angle GKA+\angle AKB=\angle GFA+\angle AKB=\angle BKH+\angle AKB=\angle AKH \]有$ HKD $三点共线。又\[ \angle BKH=\angle BFH=\angle DFI=\angle DKI \]又有$ BKI $三点共线。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-6-26 04:55
Last edited by 乌贼 2021-6-26 05:03回复 2# 乌贼
有无数多四点共圆
212.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-26 21:55
回复 3# 乌贼
起初觉得题目设定很简单没想到会衍生出这么多结论

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit