Forgot password
 Register account
View 446|Reply 2

[函数] 证明一个恒等式

[Copy link]

126

Threads

430

Posts

1

Reputation

Show all posts

TSC999 posted 2021-7-13 10:40 |Read mode
Last edited by hbghlyj 2025-3-9 18:29已知 $m, ~ n$ 均为正整数,证明下面的恒等式:
\[
\begin{aligned}
& \frac{1}{2} m^{\frac{n+1}{2}}\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right)+\frac{m+1}{4} m^{\frac{n}{2}}\left(1-\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right)\right) \equiv\left(m^{\lfloor(n+1) / 2\rfloor}+m ^{\lfloor(n+2) / 2\rfloor}\right) / 4 。 \\
& \left\lfloor\frac{n}{2}\right\rfloor,\lfloor(n+1) / 2\rfloor, ~\lfloor(n+2) / 2\rfloor \text { 分别表示 } \frac{n}{2}, ~(n+1) / 2, ~(n+2) / 2 \text { 的整数部分。 }
\end{aligned}
\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-7-13 23:44
分 n 的奇偶两种情况讨论不就行了么,很简单啊

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2021-7-16 12:11
Last edited by tommywong 2021-7-16 12:25好睇啲可以寫成
$m^{\frac{n}{2}}\left(
\frac{\sqrt{m}}{2}\left(2\{\frac{n}{2}\}\right)
+\frac{m+1}{4}\left(2\{\frac{n+1}{2}\}\right)\right)
=m^\frac{n}{2}\left(\frac{\sqrt{m}}{4}\left(\frac{1}{\sqrt{m}}\right)^{2\{\frac{n+1}{2}\}}
+\frac{m}{4}\left(\frac{1}{\sqrt{m}}\right)^{2\{\frac{n}{2}\}}\right)$

咁就可以明白到條式有幾咁無聊

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:39 GMT+8

Powered by Discuz!

Processed in 0.011911 seconds, 24 queries