Forgot password?
 Register account
View 520|Reply 7

[数论] 简单的整除问题推理,绕晕了

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2021-7-13 20:32 |Read mode
已知$a$, $b$为整数,且$3|4\cdot\dfrac{a}{b}$,则$3|\dfrac{a}{b}$.

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-7-13 20:33
某个同事的推理过程如下:
因为(3,4)=1,则$3|\dfrac{a}{b}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-7-13 21:37
显然不成立啊,比如a=3,b=4

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-7-13 22:12
Last edited by hbghlyj 2025-3-21 23:52于是
\[
a_n=(n-1)\left[\left(\frac{a_2}{2}-1\right) n+2\right]
\]

\[
a_{1999}=1998 \cdot\left[\left(\frac{a_2}{2}-1\right) \cdot 1999+2\right]
\]
由 $2000 \mid a_{1999}$ 得
\[
1000 \left\lvert\, 999\left[\left(\frac{a_2}{2}-1\right) \cdot 1999+2\right]\right.
\]
因为 $(1000,999)=1$ ,所以 $1000 \left\lvert\,\left(\frac{a_2}{2}-1\right) \cdot 1999+2\right.$

于是 $a_2$ 为偶数,可设 $a_2=2 m$ ,则
\[
1000 \mid(m-1) \cdot 1999+2
\]
是不是得要先说明中括号部分是整数才行,也就是得要先说明$a_2$为偶数才行?

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-7-13 22:13
回复 3# kuing


  照片中的过程是把$a_2$为偶数作为结论,感觉因果关系乱了啊!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-7-13 23:36
嗯,该推理不对。
如果原题已规定 a2 是整数,那还可以补救。
由于中括号内的分母为 2,如果不是整数,那小数部分就是 0.5,乘以 999 依然是 0.5,不可能被 1000 整除,所以中括号部分必然为整数,即 a2/2*1999 为整数,即 a2 为偶数。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-7-14 00:03
回复 6# kuing


   楼主只截了后半段,题设并没有截出来,你这也是合理推测啦

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-7-14 22:04
谢谢Kuing

Mobile version|Discuz Math Forum

2025-5-31 11:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit