Forgot password?
 Register account
View 481|Reply 2

[不等式] 不等式问题

[Copy link]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

大佬最帅 Posted 2021-7-16 08:17 |Read mode
Screenshot_20210716_080918.jpg
求解此题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-7-17 19:04
更强式(最佳系数):
\[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\sqrt2}8\left( 1+\frac ab \right)\left( 1+\frac bc \right)\left( 1+\frac ca \right)\geqslant1+\sqrt2.\]
证明:易知不等式等价于
\[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\sqrt2}8\cdot\frac{(a+b+c)(ab+bc+ca)}{abc}\geqslant1+\frac98\sqrt2,\]由齐次性不妨设 `a+b+c=1`,令 `ab+bc+ca=(1-q^2)/3`, `q\in[0,1)`,则由 pqr 定理
\[abc\leqslant\frac{(1-q)^2(1+2q)}{27},\]所以只需证
\[\frac{\frac{1-q^2}3}{1-2\cdot\frac{1-q^2}3}+\frac{\sqrt2}8\cdot\frac{\frac{1-q^2}3}{\frac{(1-q)^2(1+2q)}{27}}\geqslant1+\frac98\sqrt2,\]通分因式分解为
\[\frac{3\bigl( 4+3\sqrt2 \bigr)\bigl( 2q+4-3\sqrt2 \bigr)^2q^2}{8(1-q)(2q+1)\left( 2q^2+1 \right)}\geqslant0,\]显然成立。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-18 10:00
这是一个 wenku.baidu.com 链接。以下是指向同一文档的“cut-the-knot.com”链接:
cut-the-knot.org/arithmetic/algebra/3variable.pdf
On a class of three-variable inequalities, Vo Quoc Ba Can

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit