Forgot password?
 Register account
View 694|Reply 7

[几何] 向量最值

[Copy link]

10

Threads

4

Posts

72

Credits

Credits
72

Show all posts

2009 Posted 2021-7-22 15:04 |Read mode
xlzz.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-7-22 19:11
消 `\bm a` 变成 `\cos\langle4\bm b+\bm c,\bm b+\bm c\rangle=5/13`,然后画图:
QQ截图20210722191119.png
图中 `\vv{CB}=\bm b`, `\vv{CD}=4\bm b`, `\vv{OC}=\bm c`,则 `\cos\angle BOD=5/13`,在 `OC` 上取 `E` 使 `BE\px OD`,则 `OC=4OE`,即 `E` 为定点,且 `\angle OBE=\angle BOD` 为定值,故 `B` 的轨迹是圆,下略。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-7-22 19:58
代数解法也来一发吧,主要是还能用上均值

为方便书写记 `x=\bm b^2`, `y=\bm b\cdot\bm c`, `z=\bm c^2`,由 `\cos\langle4\bm b+\bm c,\bm b+\bm c\rangle=5/13` 得
\[\frac5{13}=\frac{(4\bm b+\bm c)\cdot(\bm b+\bm c)}{\abs{4\bm b+\bm c}\cdot\abs{\bm b+\bm c}}=\frac{4x+5y+z}{\sqrt{16x+8y+z}\sqrt{x+2y+z}},\]待定正数 `k`,则均值有
\begin{align*}
4x+5y+z&=\frac5{13}\sqrt{16x+8y+z}\sqrt{x+2y+z}\\
&=\frac5{13k}\sqrt{16x+8y+z}\sqrt{k^2(x+2y+z)}\\
&\leqslant\frac5{26k}\bigl(16x+8y+z+k^2(x+2y+z)\bigr),
\end{align*}为消去 `x`,令
\[\frac{5(16+k^2)}{26k}=4\riff k_1=20,k_2=\frac45,\]取 `k_1` 化简得 `32y+33z\geqslant0`,取 `k_2` 化简得 `32y+7z\leqslant0`,代回条件即 `z=32`,得 `-33\leqslant y\leqslant-7`,取等略。

Rate

Number of participants 1威望 +1 Collapse Reason
走走看看 + 1 高招!

View Rating Log

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-8-3 17:55
这儿一道向量题
QQ截图20210711223232.png
妙不可言,不明其妙,不着一字,各释其妙!

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-2-8 10:22
Last edited by 走走看看 2022-2-8 19:06总感觉B的极限位置在O上,这样,bc=-32。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2022-2-10 14:09

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-2-11 10:51
Last edited by 走走看看 2022-3-12 16:28回复 6# 其妙

谢谢  其妙!

您的解答很巧妙。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-3-12 16:23
回复 3# kuing

这种解答绝妙!

Kuing的2楼的几何法,如何对下解呢?

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit