Forgot password?
 Register account
View 369|Reply 1

[函数] 二次函数的零点在两整数之间的最小值与1/4的大小关系

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-7-22 16:25 |Read mode
已知二次函数$f(x)=x^2+px+q$通过点$(\alpha,0)$,$(\beta,0)$.若存在整数$n$,使$n<\alpha<\beta<n+1$,则$\min\{f(n),f(n+1)\}$与$\frac 14$的大小关系为( B )

A.$\min\{f(n),f(n+1)\}>\frac 14$
B.$\min\{f(n),f(n+1)\}<\frac 14$
C.$\min\{f(n),f(n+1)\}=\frac 14$       
D.不能确定,与$n$的具体取值有关

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-7-22 16:35
回复 1# isee

这肯定是一道陈题了。不过,还有难度的,记录一下.

相邻两整数,决定了$f(n),f(n+1)\in(0,1)$,依题`f(x)=(x-\alpha)(x-\beta),`于是\[f(n)f(n+1)=(\alpha-n)(\beta-n)(n+1-\alpha)(n+1-\beta)<\left(\frac{\alpha-n+\beta-n+n+1-\alpha+n+1-\beta}4\right)^4=\frac 1{16},\]于是选B.

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit