|
Last edited by isee 2021-7-23 19:26陈题,但不失典型,不失经典
已知函数\(f\left( x \right)\)的定义域为\(\left\{ x|x\ne k\pi\text{ ,}k\in \mathbf{Z} \right\}\),且对于定义域内的任何`x`,`y`,有\(f(x-y)=\frac{f(x)f(y)+1}{f(y)-f(x)}\)成立,且\(f\left( a \right)=1\) (`a`为正常数).
(1)判断`f(x)`的奇偶性;
(2)证明`f(x)`为周期函数;
(3)若当\(0<x<2a\)时,\(f\left( x \right)>0\),求\(f\left( x \right)\)在\(\left[ 2a,3a \right]\)上的最小值和最大值. |
|