Forgot password?
 Register account
View 389|Reply 1

[函数] 证明抽象函数的性质

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2021-7-23 19:16 |Read mode
Last edited by isee 2021-7-23 19:26陈题,但不失典型,不失经典

已知函数\(f\left( x \right)\)的定义域为\(\left\{ x|x\ne k\pi\text{ ,}k\in \mathbf{Z} \right\}\),且对于定义域内的任何`x`,`y`,有\(f(x-y)=\frac{f(x)f(y)+1}{f(y)-f(x)}\)成立,且\(f\left( a \right)=1\) (`a`为正常数).

(1)判断`f(x)`的奇偶性;
(2)证明`f(x)`为周期函数;
(3)若当\(0<x<2a\)时,\(f\left( x \right)>0\),求\(f\left( x \right)\)在\(\left[ 2a,3a \right]\)上的最小值和最大值.

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

 Author| isee Posted 2021-7-23 19:32
Last edited by isee 2021-7-23 19:47关键提示:
\begin{align*}
f(x-a)&=\frac{f(x)+1}{1-f(x)}=\frac{f(x+a-a)+1}{1-f(x+a-a)}\\[1ex]
&=\frac{\frac{f(x+a)+1}{1-f(x+a)}+1}{1-\frac{f(x+a)+1}{1-f(x+a)}}\\[1ex]
&=-\frac 1{f(x+a)}
\end{align*}

由以上的第一行前两式,知`f(x-a)+f(a-x)=0`,这便是奇函数;

由`f(x-2a)=-\frac 1{f(x)}`知周期为`4a`.

令`0<x<y<2a`则由(3)中所给的条件及上式易得`f(x)>0,f(y)>0`,从而
\begin{align*}
f(x)-f(y)&=\frac{f(x)f(y)+1}{f(y-x)}>0\\
\iff f(x) &\downarrow
\end{align*}

Mobile version|Discuz Math Forum

2025-6-1 19:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit