Forgot password
 Register account
View 419|Reply 5

[不等式] 正弦和大于4

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-7-25 15:02 |Read mode
若锐角`\angle 1`,`\angle 2`,`\cdots`,`\angle n`为`n`边形的`n`个外角,求证:`\sin \angle 1 + \sin \angle 2 + \cdots+\sin \angle n > 4 `.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-7-25 15:24
改为:`x_i\in[0,90\du]`, `x_1+x_2+\cdots+x_n=360\du`,证 `\sin x_1+\sin x_2+\cdots+\sin x_n\geqslant4`。

凸函数性质:若 `f(x)` 在 `[a,b]` 上严格上凸,该区间内有四数满足 `x_1<x\leqslant y<y_1` 且 `x_1+y_1=x+y`,则 `f(x)+f(y)>f(x_1)+f(y_1)`。

推论:在上述前提下,变量 `x_i\in[a,b]` 满足 `\sum x_i` 为定值,则 `\sum f(x_i)` 取最小值时至多有一个变量不在区间端点。

回到开头,由于 `90\mid360`,当 `n-1` 个 `x_i` 都取 `[0,90\du]` 的端点时,剩下那个也只能是端点,也就是 `\sum\sin x_i` 取最小值时全部都取端点,于是只能是 `4` 个 `90\du` 其余全是 `0`,因此 `\sum\sin x_1\geqslant4`。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-7-25 15:31
回复 2# kuing


果然与凹凸性有关

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-7-25 15:52
回复 3# isee

嗯,2# 写完了。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-8-21 22:25
Last edited by isee 2021-8-22 23:22回复 1# isee

看到一个高中生可以理解的解法,by 怪怪的僵尸
   
注意`x\in (0,\pi/2),f(x)=\sin x-\frac 2{\pi} x>0`(求导,可知最小值大于零),于是\[\sin \angle 1 + \sin \angle 2 + \cdots+\sin \angle n > \frac 2{\pi}(\angle 1 + \angle 2 + \cdots+\angle n)=\frac 2{\pi}\cdot 2\pi=4.\]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-8-22 03:56
回复 5# isee

支撑线(割线)法……

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:14 GMT+8

Powered by Discuz!

Processed in 0.013885 seconds, 23 queries