Forgot password?
 Register account
View 367|Reply 5

[函数] `e^x-1-x-ax^2>0`

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-7-26 16:50 |Read mode
若`x>0`使`e^x-1-x-ax^2>0`恒成立,求实数`a`的取值范围.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-7-26 17:04
太乐直接知道 a<=1/2 啊……
高中证明的话也只需不断求导啊……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-7-26 18:57
回复 2# kuing


经典题,一会儿在高中范围内解一下

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-7-26 23:54
这里承认`e^x\geqslant x+1`是直接可引用的.
于是`a\leqslant 0`时`(e^x-1-x)+(-ax^2)>0+0=0`是显然满足题设的,下面讨论`a>0`的情形.

\begin{align*}
\forall x>0,e^x-1-x-ax^2&>0\\
\iff g(x)=(1+x+ax^2)e^{-x}&<1,x>0
\end{align*}

于是令\[g'(x)=x(2a-1-ax)e^{-x}=0,x_1=0,x_2=\frac {2a-1}a,\]
当`a>\frac 12`时,`x_2>x_1=0`,所以`x\in (0,x_2)`时`g'(x)>0`,`g(x)`在`(0,x_2)`单调递增,从而有`g(x)>g(0)=1`与题设矛盾.

当`0<a\leqslant \frac 12`时,`x_2<x_1=0`,所以`x\in (0,+\infty)`时`g'(x)<0`,`g(x)`在`(0,+\infty)`单调递减,从而有`g(x)<g(0)=1`,满足题意.

综上所述,`a\leqslant \frac 12`.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-8-3 17:48
指数找朋友

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-8-3 17:49
罗必塔试一试

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit