Forgot password?
 Register account
View 484|Reply 5

[数论] $x^4+16$ 质因子

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-7-29 03:30 |Read mode
Last edited by hbghlyj 2021-7-30 03:45呜呜好久不做数论都忘光了,转发qq群里的一道题:

x是24k+17型的数,为什么$x^4+16$只含24k+1和24k+17这两种质因子

我的思路
$x\equiv 2\pmod3\Rightarrow x^4+16\equiv 2\pmod3$,只需证$x^4+16$只含8k+1型质因子
设p是$x^4+16$的质因子,即$x^4\equiv-16\pmod p$,则$(2^{-1}x)^4\equiv-1\pmod p$,即-1是模p的四次剩余(英文:quartic residue.又名,双重二次剩余,biquadratic residue).
维基知$p\equiv1\pmod8$,证毕

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-7-29 22:54
回复 1# hbghlyj


x^4+16=(x^8−2x^4+2)(……

显然有问题,因式分解

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-7-30 03:43
回复 2# isee
嗯嗯,改好了

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2021-7-31 09:10
8k+1 形因子,和forum.php?mod=viewthread&tid=6376&from=favorites  5楼类似.
另外mod3 结果也没问题,但为什么和因子有关联,为什么由此可以得出只含24k+1和24k+17质因子?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-8-1 09:05
回复 4# realnumber
是这样的:
8k+1型的数可分为3类:
24k+1
24k+9
24k+17
我们通过mod3说明了它不是3的倍数,所以24k+9是不可能的

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2021-8-2 06:21
回复 5# hbghlyj


    恩,明白了

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit