Forgot password?
 Register account
View 400|Reply 1

[函数] \(f\left( x_1 \right)+f\left( x_2 \right)=0\)证明$x_1+x_2\ge 4$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-7-31 22:30 |Read mode
已知函数\(f(x)=x^2-ax+2\ln x-3\)
(1)讨论\(f(x)\)的单调性.
(2)若对任意的$a\in \left[ 1,2 \right]$,总存在\(x_1\),\(x_2\),使得\(f\left( x_1 \right)+f\left( x_2 \right)=0\),证明:$x_1+x_2\ge 4$.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-1 14:34
Last edited by isee 2021-8-1 14:58回复 1# isee


解:先求导得`f’(x)=2x+\frac 2x-a,x>0`.

(1)当`a\leqslant 4`时,`f'(x)>0`,故`f(x)`在`(-\infty,+\infty)`单调递增.
当`a>4`时,易求得`f'(x)=\frac{2x^2-ax+2}x=0`的两正根分别为`x_1=\frac {a-\sqrt{a^2-16}}4`,`x_2=\frac {a+\sqrt{a^2-16}}4`.
所以当`x\in (0,x_1),(x_2,+\infty)`时,`f'(x)>0`,故`f(x)`单调递增;当`x\in (x_1,x_2)`时,`f'(x)<0`,故`f(x)`单调递减.


(2)这种多变量处理起来不还是麻烦的,一般是一个一个的"丢掉".

由(1)知`a\in [1,2]`时,`f(x)`是单调递增的,且`f(x)\in (0,+\infty)`,即存在`x_1,x_2`使得`f(x_1)+f(x_2)=0`成立.

即有\[x_1^2-ax_1+2\ln x_1-3+x_2^2-ax_2+2\ln x_2-3=0,\]
整理为\[(x_1+x_2)^2-a(x_1+x_2)=6+2x_1x_2-2\ln x_1x_2,\]
令\[g(x)=6+2x-2\ln x,x>0,\]求导可知\[g(x)_{\min}=g(1)=8.\]
从而`\forall a\in [1,2]`使得\[(x_1+x_2)^2-a(x_1+x_2)\geqslant 8,\]
亦即\[(x_1+x_2)-\frac 8{x_1+x_2}\geqslant a,\],
所以\[(x_1+x_2)-\frac 8{x_1+x_2}\geqslant 2,\]
从而\[(x_1+x_2+2)(x_1+x_2-4)\geqslant 0\Rightarrow x_1+x_2\geqslant 4.\]

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit