|
Author |
isee
Posted 2021-8-3 17:22
回复 1# isee
求导有`f'(x)=\frac 1x-a=\frac {1-ax}x,x>0`.
当`a\leqslant 0`时,`f'(x)>0`,即`f(x)`单调递增,最多一个零点,与题设不相符.
所以`a>0`,此时令`f'(x)=0\Rightarrow x=\frac 1a`,进一步知`f(x)_{\max}=f(1/a)=-\ln a>0`,故`0<a<1`.
为了方便,不加证明,直接运用对数均值不等式\[a,b>0,a\ne b,\sqrt{ab}<\frac {a-b}{\ln a-\ln b}<\frac {a+b}2\iff \sqrt x<\frac {x-1}{\ln x}<\frac {x+1}2,x=a/b.\]
`f(1)=1-a>0,f(1/e)=-ae<0`,不妨令`1/e<x_1<1<\frac 1a<x_2`.
\[f(x_1)=f(x_2)=0\Rightarrow \sqrt{x_1x_2}<\frac 1a=\frac {x_1}{\ln x_1+1}=\frac {x_2}{\ln x_1+1}=\frac {x_1-x_2}{\ln x_1-\ln x_2}<\frac {x_1+x_2}2,\]所以`x_1+x_2>\frac 2a>2`.
又`\[(1-x_1)(1-x_2)<0\Rightarrow 1+x_1x_2<x_1+x_2.\]
另外\[f(x_1)=f(x_2)=0\Rightarrow \ln x_1x_2=a(x_1+x_2)-2>2-2=0\Rightarrow 1<x_1x_2<\frac 1{a^2}.\]
于是\[x_1+x_2-2ax_1x_2>\frac 2a-2ax_1x_2>0,\]即\[\frac 1{x_1}+\frac 1{x_2}>2a.\]
如此一来,选BC.
D 的反例可否构造出来? |
|