Forgot password
 Register account
View 365|Reply 1

[不等式] $\sin^3 \alpha+\sin^3 \beta+\sin^3 \gamma=1$

[Copy link]

1

Threads

0

Posts

0

Reputation

Show all posts

wsg posted 2021-8-5 10:59 |Read mode
Last edited by hbghlyj 2025-6-2 04:38设 $0<\alpha, \beta, \gamma<\frac{\pi}{2}$,且 $\sin^3 \alpha+\sin^3 \beta+\sin^3 \gamma=1$,求证 $\tan^2 \alpha+\tan^2 \beta+\tan^2 \gamma \geq \frac{3 \sqrt{3}}{2}$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-8-5 14:44
由均值有
\[\tan^2\alpha=\frac{\sqrt2\sin^3\alpha}{\sqrt{2\sin^2\alpha\cdot\cos^2\alpha\cdot\cos^2\alpha}}\geqslant\frac{\sqrt2\sin^3\alpha}{\sqrt{\left( \frac{2\sin^2\alpha+\cos^2\alpha+\cos^2\alpha}3 \right)^3}}=\frac{3\sqrt3}2\sin^3\alpha,\]同理有另外两式,相加即得证。

注:原不等式其实无法取等,上述均值取等为 `2\sin^2\alpha=\cos^2\alpha` 即 `\sin\alpha=1/\sqrt3`,另外两个同理,这就不满足立方和为 1 的条件了。

事实上,按原题条件,有
\[\tan^2\alpha+\tan^2\beta+\tan^2\gamma\geqslant\frac3{\sqrt[3]9-1},\]这个才是可以取等的,而且切线法可行。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:45 GMT+8

Powered by Discuz!

Processed in 0.012124 seconds, 23 queries