Forgot password?
 Register account
View 351|Reply 1

[不等式] 不等式

[Copy link]

1

Threads

0

Posts

5

Credits

Credits
5

Show all posts

wsg Posted 2021-8-5 10:59 |Read mode

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-5 14:44
由均值有
\[\tan^2\alpha=\frac{\sqrt2\sin^3\alpha}{\sqrt{2\sin^2\alpha\cdot\cos^2\alpha\cdot\cos^2\alpha}}\geqslant\frac{\sqrt2\sin^3\alpha}{\sqrt{\left( \frac{2\sin^2\alpha+\cos^2\alpha+\cos^2\alpha}3 \right)^3}}=\frac{3\sqrt3}2\sin^3\alpha,\]同理有另外两式,相加即得证。

注:原不等式其实无法取等,上述均值取等为 `2\sin^2\alpha=\cos^2\alpha` 即 `\sin\alpha=1/\sqrt3`,另外两个同理,这就不满足立方和为 1 的条件了。

事实上,按原题条件,有
\[\tan^2\alpha+\tan^2\beta+\tan^2\gamma\geqslant\frac3{\sqrt[3]9-1},\]这个才是可以取等的,而且切线法可行。

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit