Forgot password?
 Register account
View 359|Reply 5

[函数] 二元比较大小

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-8-7 23:59 |Read mode
已知函数`f(x)=\ln x-x`,若`m>n>0`,比较\[\frac{f(m)+m-f(n)-n}{m-n}\text{与}\frac{m}{m^2+n^2}\]的大小.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-8 00:08
题目真怪,左边直接写成 `\dfrac{\ln m-\ln n}{m-n}` 不好吗?
搞个 f 出来做啥,是不是还有第一小问之类的原题?

左边分母乘过去,换个元变成单变量,应该没啥问题吧?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-8 00:10
回复 2# kuing

考卷里是这样的啊好送几分啊,是有第一问,不过,是g(x),其实都没啥关系.


纯粹的二元不等式,实际上是

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-8 01:00
回复 2# kuing


这个不等式太弱了,直接可以用对数均值不等式放过去,可以算是一眼看尽系列了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-9 23:41
回复 4# isee


    熟知任意不等正实数`a,b`有`\frac{a-b}{\ln a-\ln b}<\frac{a+b}2`于是有\[\frac{f(m)+m-f(n)-n}{m-n}=\frac{\ln m-\ln n}{m-n}>\frac 2{m+n},\]而\[\frac 2{m+n}>\frac 2{2m+\frac{2n^2}m}=\frac{m}{m^2+n^2}\]是非显然的.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-9 23:47
回复 2# kuing

所谓双元化一元,在这里是指令`\dfrac mn=x`,则等价于比较\[\frac 1n\cdot \frac{\ln x}{x-1}\text{与}\frac 1n\cdot \frac 1{x+\frac 1x}.\]

Mobile version|Discuz Math Forum

2025-5-31 11:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit