Forgot password?
 Register account
View 491|Reply 4

[几何] 四边形中,等角等边证相等

[Copy link]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-8-8 02:04 |Read mode
Last edited by 乌贼 2021-8-8 02:48如图: 211.png
凸四边形$ ABCD $中$ \angle ABD=\angle ADE,\angle BDC=\angle CBF $,若$ AD=AF $。求证:$ CB=CE $

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2021-8-8 02:06
Last edited by 乌贼 2021-8-8 03:03链接:forum.php?mod=viewthread&tid=8082&ext … er=type&typeid=2
这题解,链接中的题也解。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-8 03:29
记 `AE=x`, `EB=y`, `CF=a`, `FD=b`,依题意有 `AD=\sqrt{x(x+y)}`, `BC=\sqrt{a(a+b)}`,如下图所示:
QQ截图20210808032933.png
作 `AM\perp CD` 于 `M`,依题意有 `M` 为 `DF` 中点,由勾股定理有
\[AC^2=MC^2+AM^2=\left( a+\frac b2 \right)^2+x(x+y)-\left( \frac b2 \right)^2=a(a+b)+x(x+y),\]于是由余弦定理有
\[\cos\angle ABC=\frac{a(a+b)+(x+y)^2-AC^2}{2\sqrt{a(a+b)}(x+y)}=\frac y{2\sqrt{a(a+b)}},\]也就是
\[BC\cos\angle ABC=\frac y2,\]这就说明了 `CB=CE`。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2021-8-8 16:59
回复 3# kuing
这证法直接暴力

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-8 17:05
回复 4# 乌贼

这都算暴力咩?计算量很小喔……

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit