Forgot password
 Register account
View 480|Reply 3

[数列] \(\left[ \frac 1{S_1}+\frac 1{S_2}+\cdots +\frac 1{S_{100}} \right]=?\)

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-8-10 22:10 |Read mode
对于实数$x$,定义\(\left[ x \right]\)表示不超过$x$的最大整数,已知正项数列$\left\{a_n\right\}$满足:$a_1=1$,$S_n=\frac 12\left( a_n+\frac 1{a_n} \right)$,其中$S_n$为数列$\left\{ a_n \right\}$前$n$项和,则\(\left[ \frac 1{S_1}+\frac 1{S_2}+\cdots +\frac 1{S_{100}} \right]=\)_18_.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-8-10 22:39
递推消 S 后就是《撸题集》P.870 题目 6.5.32 了。
或类似的:forum.php?mod=viewthread&tid=5748

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-8-10 22:42
回复 2# kuing

呃,这算是有难度了,我都没想到这二者实质相同~真是此一时彼一时也

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-8-23 23:37
回复 1# isee

楼上说的是消`S_n`,此处直接消`a_n`更合适些,即
\[2S_n=S_n-S_{n-1}+\frac 1{S_n-S_{n-1}}\Rightarrow S_n^2-S_{n-1}^2=1,\]下面的路还比较长,不过,还是略了,哈哈哈

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:03 GMT+8

Powered by Discuz!

Processed in 0.013538 seconds, 22 queries