Forgot password?
 Register account
View 523|Reply 6

[函数] 关于`x`的方程`x^4+ax^3+ax^2+ax+1=0`有实根

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-8-11 16:57 |Read mode
若关于`x`的方程`x^4+ax^3+ax^2+ax+1=0`有实根,则实数`a`的取值范围是__$\left(-\infty,-\frac 23\right] \cup \left[2, +\infty\right)$__.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-11 17:04
想起了《撸题集》P.1016 FAQ 12.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-11 23:42
回复 2# kuing


链接废了 ,可惜了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-12 00:14
回复 3# isee

abbr_21c9bc845d4a4636a3503df15eb90ce7.gif
abbr_f95c8bb032fb90a5cee5ba9733f61f81.gif

帖中 8# 中间那里应该改成 `a^2+b^2\geqslant d^2=\cdots`

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-12 00:36
当然现在楼主的题就简单多了,直接分离 a,有
\[a=-\frac{x^4+1}{x+x^2+x^3}=-\frac{x^2+1/x^2}{x+1/x+1}=-\frac{t^2-2}{t+1}=2+\frac1{t+1}-(t+1),\]其中 `t=x+1/x\in(-\infty,-2]\cup[2,+\infty)`。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-12 00:45
回复 4# kuing

你应该发个论坛版的冬至撸题集补丁~~~人教本地补丁,哈哈哈哈哈
==
突发奇想,如果有个折叠图片功能将多美

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2021-8-12 18:56
回复 4# kuing


前几年好像有别人也弄了一个人教论坛的好题收集版本 可惜找不到了

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit