Forgot password?
 Register account
View 2628|Reply 6

[几何] 卡住了,一个椭圆问题

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-11-11 22:36 |Read mode
已知动点P(x,y)在椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上,点A(3,0),$\abs{\vv{AM}}=1$,且$\vv{PM}·\vv{AM}=0$,则$\abs{\vv{PM}}$的最小值为_____.
设三角坐标P(5cost,4sint),M(3+coss,sins)硬算?

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-11 22:51
答案?
我都怀疑我自己了

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-11-11 22:55
只要 PA 最小就行了吧?这个可以算的

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2013-11-11 23:03
回复 3# kuing


    en,果然昏头了~~

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2013-11-11 23:04
Last edited by hbghlyj 2025-5-22 05:12$PM^2=AP^2-AM^2$,不知道$AP$在哪最小
211.png

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-11-11 23:08
而且这个题的数据特殊,A 刚好是焦点,所以居然是在右顶点处最小。
其实,只要 A 在对称轴上,都是可以算的。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-11 23:15
所以我都以为 我做错了呢

Mobile version|Discuz Math Forum

2025-6-5 19:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit