Forgot password?
 Create new account
View 2487|Reply 6

[几何] 卡住了,一个椭圆问题

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-11-11 22:36:28 |Read mode
已知动点P(x,y)在椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上,点A(3,0),$\abs{\vv{AM}}=1$,且$\vv{PM}·\vv{AM}=0$,则$\abs{\vv{PM}}$的最小值为_____.
设三角坐标P(5cost,4sint),M(3+coss,sins)硬算?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-11 22:51:40
答案?
我都怀疑我自己了

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-11-11 22:55:19
只要 PA 最小就行了吧?这个可以算的

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-11-11 23:03:28
回复 3# kuing


    en,果然昏头了~~

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2013-11-11 23:04:13
$PM^2=AP^2-AM^2$,不知道$AP$在哪最小
[attachimg]
211.png

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-11-11 23:08:19
而且这个题的数据特殊,A 刚好是焦点,所以居然是在右顶点处最小。
其实,只要 A 在对称轴上,都是可以算的。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-11 23:15:10
所以我都以为 我做错了呢

手机版Mobile version|Leisure Math Forum

2025-4-21 14:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list