Forgot password?
 Register account
Author: kuing

补录最近人教群几道题(包括一些未解决的)

[Copy link]

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2023-5-6 18:12
Last edited by hbghlyj 2024-4-15 13:37wolframalpha.com/input?i=Table[Sum[Sin[k^2 Pi … ],{k,1,2n-1}],{n,6}]
类似:math.stackexchange.com/questions/2670750/sum- … and-tan?noredirect=1
kuing 发表于 2021-8-19 09:33
粤B学生86鱼 2021/8/2 10:18:15
谁来看看这个恒等式,如何证明
\begin{equation}\label1\sum_{k=1}^{2 n-1} \frac{\sin \left(\frac{k^{2} \pi}{2 n}\right)}{\sin \left(\frac{k \pi}{2 n}\right)}=n\end{equation}
根据下面的恒等式
hbghlyj 发表于 2022-11-13 15:47
Variant of identity: ${\displaystyle \sum _{k=0}^{N-1}e^{ikx}=e^{i(N-1)x/2}{\frac {\sin(N\,x/2)}{\sin(x/2)}}}$
可以将\eqref{1}中的$\frac{\sin \left(\frac{k^{2} \pi}{2 n}\right)}{\sin \left(\frac{k \pi}{2 n}\right)}$写成级数, 得到二重级数
$$n=\sum _{j=0}^{2 n-1} \sum _{k=0}^{2 n-1-j} \exp \left(\frac{i \pi  }{2 n}(j+k) (j-k+1)\right)$$
证明见此帖

Mobile version|Discuz Math Forum

2025-6-6 13:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit