Forgot password?
 Register account
View 378|Reply 4

有点平凡的齐7次式的条件求值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-8-19 22:01 |Read mode
Last edited by isee 2021-8-19 22:53若`a+b+c=0`,求\[\frac {a^7+b^7+c^7}{abc(a^4+b^4+c^4)}.\]


依然源自 SyberMath 的视频

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-19 22:12
Last edited by isee 2021-8-19 22:18回复 1# isee


拖了一下视频,视频里做得很规矩.

我是硬算的,直接`c^7=-(a+b)^7`二项式展开,并令`b=at`化为一元,并分解因式有
\begin{align*}
\frac {a^7+b^7+c^7}{abc(a^4+b^4+c^4)}&=\frac {1+t^7-(t+1)^7}{-t(t+1)(1+t^4+(t+1)^4)}\\[1em]
&=\frac {7t(t+1)(t^4+2t^3+3t^2+2t+1)}{2t(t+1)(t^4+2t^3+3t^2+2t+1)}\\[1em]
&=\frac 72
\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-8-19 22:49
令 `x_n=a^n+b^n+c^n`,条件即 `x_1=0`,
由 `(a+b+c)^2=0` 展开得 `x_2=-2(ab+bc+ca)`,
由 `a^3+b^3+c^3-3abc=(a+b+c)(\cdots)` 得 `x_3=3abc`,故
\[\text{原式}=\frac{3x_7}{x_3x_4}.\]
根据特征方程的理论,`a`, `b`, `c` 为数列 `x_n` 的特征方程的三根,即特征方程为
\[(x-a)(x-b)(x-c)=0,\]即
\[x^3-(a+b+c)x^2+(ab+bc+ca)x-abc=0,\]因此 `x_n` 满足
\[x_{n+3}-(a+b+c)x_{n+2}+(ab+bc+ca)x_{n+1}-abcx_n=0,\]亦即
\[x_{n+3}=\frac{x_2}2x_{n+1}+\frac{x_3}3x_n,\]所以有
\[x_4=\frac{x_2}2x_2+\frac{x_3}3x_1=\frac12x_2^2,\]以及
\[x_7=\frac{x_2}2x_5+\frac{x_3}3x_4=\frac{x_2}2\left( \frac{x_2}2x_3+\frac{x_3}3x_2 \right)+\frac{x_3}3\cdot\frac12x_2^2=\frac7{12}x_2^2x_3,\]从而
\[\frac{3x_7}{x_3x_4}=\frac{\frac74x_2^2x_3}{x_3\cdot\frac12x_2^2}=\frac72.\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 此地无银三百两

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-19 22:54
回复 3# kuing


    原来是有料的~难怪视频里那么规矩

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-1 16:21
回复 4# isee

3# 的递推的一般化就是 牛顿等幂和公式

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit