Forgot password?
 Register account
View 456|Reply 7

[数论] 一道二元不定方程的正整数解

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2021-8-21 21:22 |Read mode
求方程$xy^2-x^2-6y+4=0$的正整数解.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-8-21 23:46
回复 1# aishuxue

能目测出一组`(2,3)`

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2021-8-22 17:09
wolframalpha.com/input/?i=solve xy^2-x^2-6y+4=0, integer
(-2,-3), (2,0), (-2,0), (2,3), (7,3), (11,-3)

有四個解係$x=\pm 2$
$y(xy-6)=(x-2)(x+2)$

可以證明$3\mid y$但唔知有冇用

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2021-8-22 17:57
能不能不断地用求根公式?比如$y=\frac{3\pm\sqrt{x^2-4x+9}}{x}$,这样$x^2-4x+9$就是完全平方数,设为$k^2,k\ge 0$,所以$x^2-4x+9-k^2=0$,然后再求根,$x=2\pm\sqrt{k^2-5}$,这样$k^2-5$还是完全平方数,设为$m^2,m>0$,然后就有$k^2-m^2=5$,左边分解因式$(k+m)(k-m)=5=1\cdot 5=-1\cdot -5$,穷举就得出所有的$k$,代回去就得出所有的$x$,然后就解出来了。
穷举得出的$k$是$\pm3$,然后设了$k>0$,所以只有$k=3$,这样的话$x=2\pm 2=4,0$,$x=0$时$y$不是整数,所以整数解只有$x=2,y=3$

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-8-22 18:05
求根公式中根号里算错了吧!应该是三次的吧

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2021-8-22 18:47
回复 5# aishuxue

是的,我算错了。应该是$x^3-4x+9=z^2$,这样就变成椭圆曲线上的整点问题了,对我来说有难度,觉得不太好算。

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2021-8-22 19:16
回复 6# abababa
发网友的解答,他这里椭圆曲线是$x^3-4x+9=y^2$,用了变量$y$,和前面的区别一下。两边模$x$知$\pm y \equiv 3 \pmod{x}$,所以$-y = kx+3$,于是$y^2 = (kx+3)^2$。
因为$x^3-4x+9 = y^2 = k^2x^2+6kx+9$,移项并约掉一个$x$($x \neq 0$)得$x^2-k^2x-(6k+4) = 0$,解出$x = \frac{k^2 \pm \sqrt{k^4+24k+16}}{2}$,于是$k^4+24k+16 = T$是完全平方数,但当$k < \frac{1}{2}(-\sqrt{114}-12) = -11.3$时$(k^2-1)^2 < T < (k^2)^2$,$T$在两个完全平方数之间,不能是完全平方数,当$k > \frac{1}{2}(\sqrt{174}+12) = 12.5$时$(k^2)^2 < T < (k^2+1)^2$,$T$也不能是完全平方数,所以$k = -11 \to 12$,穷举得出结果$k = 3,-3,0$,对应的$x = (11,-2), (7,2), (2,-2)$,就解出来了。

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-8-22 21:39
回复 7# abababa

谢谢了,辛苦了!,数论真的很有魅力!

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit