Forgot password?
 Register account
View 381|Reply 1

[函数] 函数`f(x)=\sqrt{\abs{x}}-ax-1`在`\mathrm R`上恰有三个零点

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-8-22 23:09 |Read mode
已知函数`f(x)=\sqrt{\abs{x}}-ax-1`在`\mathrm R`上恰有三个零点,则实数`a`的取值范围为(  )

A.`-1/4<a<1/4`且`a\ne 0`

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-23 23:26
法1,分离出直线\[\sqrt{\abs x}=ax+1,\]
而左边是偶函数,且是抛物线`y^2=\pm x``x`轴上方部分(包括原点),直线过定点`(0,1)`,数形结合,知直线与其相切是临界状态.

法2,显然`0`不是零点,设`\sqrt{\abs x}=t>0`,`x>0`时分参有\[a=\frac{t-1}{x^2}=-t^2+t=-(t-1/2)^2+\frac 14,t>0\]再结合`x<0`同样的可得\[a=(t-1/2)^2-\frac 14,t>0\]二者结合即可.
哈哈哈,不过,法2的的元,容易把人弄晕

Mobile version|Discuz Math Forum

2025-5-31 11:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit