Forgot password?
 Register account
View 468|Reply 2

[几何] 向量求直角三角形内切圆半径

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-23 23:14 |Read mode
向量证直角三角形内心到边的距离等于两直角边的和与斜边的差的二分之一.

不妨设`A,B,C` 按逆时针顺序排列,记 `\triangle ABC` 的内心为 `I`  , 延长`CI` 与 `AB` 边相交于点 `M` 则(反复用内角平分线定理)
\begin{align*}
\overrightarrow {CI}&=\frac{CI}{CM}\cdot \overrightarrow {CM}\\ &=\frac{b}{b+\frac{bc}{a+b}}\cdot \left(\frac{a}{a+b}\overrightarrow{CA}+\frac{b}{a+b}\overrightarrow{CB}\right)\\ &=\frac{a}{a+b+c}\overrightarrow{CA}+\frac{b}{a+b+c}\overrightarrow{CB},
\end{align*}
(上式等价于熟悉的 `a\cdot \overrightarrow {IA}+b\cdot \overrightarrow {IB}+c\cdot \overrightarrow {IC}=\overrightarrow 0`, 但此处不必再向下化为点 `I` 的形式).

不妨设 `\angle C=90^\circ` ,在上式两边点乘 `\overrightarrow {CA}` ,注意向量数量积的几何意义(即射影),于是
\begin{align*}
\overrightarrow {CI}\cdot \overrightarrow {CA}&=\frac{a}{a+b+c}\overrightarrow{CA}\cdot\overrightarrow {CA}+\frac{b}{a+b+c}\overrightarrow{CB}\cdot\overrightarrow {CA}\\ br&=\frac{a}{a+b+c}\cdot b^2+0\\ \Rightarrow r&=\frac {ab}{a+b+c}\\ &=\frac{\frac12((a+b)^2-c^2)}{a+b+c)}\\ &=\frac{a+b-c}{2}.
\end{align*}

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-2-17 09:15
这个推导简洁!

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2022-6-24 14:35
也是看来的,这样更简洁
$a\vv{IA}+b\vv{IB}+c\vv{IC}=\vv{0}$等价变形为
$(a+b+c)\vv{AI}=b\vv{AB}+c\vv{AC}$
即$\frac{a+b+c}{bc}\vv{AI}=\frac{\vv{AB}}{\abs{\vv{AB}}}+\frac{\vv{AC}}{\abs{\vv{AC}}}$

Mobile version|Discuz Math Forum

2025-6-5 19:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit