Forgot password?
 Create new account
View 357|Reply 2

[几何] 向量求直角三角形内切圆半径

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-8-23 23:14:37 |Read mode
向量证直角三角形内心到边的距离等于两直角边的和与斜边的差的二分之一.

不妨设`A,B,C` 按逆时针顺序排列,记 `\triangle ABC` 的内心为 `I`  , 延长`CI` 与 `AB` 边相交于点 `M` 则(反复用内角平分线定理)
\begin{align*}
\overrightarrow {CI}&=\frac{CI}{CM}\cdot \overrightarrow {CM}\\ &=\frac{b}{b+\frac{bc}{a+b}}\cdot \left(\frac{a}{a+b}\overrightarrow{CA}+\frac{b}{a+b}\overrightarrow{CB}\right)\\ &=\frac{a}{a+b+c}\overrightarrow{CA}+\frac{b}{a+b+c}\overrightarrow{CB},
\end{align*}
(上式等价于熟悉的 `a\cdot \overrightarrow {IA}+b\cdot \overrightarrow {IB}+c\cdot \overrightarrow {IC}=\overrightarrow 0`, 但此处不必再向下化为点 `I` 的形式).

不妨设 `\angle C=90^\circ` ,在上式两边点乘 `\overrightarrow {CA}` ,注意向量数量积的几何意义(即射影),于是
\begin{align*}
\overrightarrow {CI}\cdot \overrightarrow {CA}&=\frac{a}{a+b+c}\overrightarrow{CA}\cdot\overrightarrow {CA}+\frac{b}{a+b+c}\overrightarrow{CB}\cdot\overrightarrow {CA}\\ br&=\frac{a}{a+b+c}\cdot b^2+0\\ \Rightarrow r&=\frac {ab}{a+b+c}\\ &=\frac{\frac12((a+b)^2-c^2)}{a+b+c)}\\ &=\frac{a+b-c}{2}.
\end{align*}

134

Threads

761

Posts

5446

Credits

Credits
5446

Show all posts

走走看看 Posted at 2022-2-17 09:15:54
这个推导简洁!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2022-6-24 14:35:03
也是看来的,这样更简洁
$a\vv{IA}+b\vv{IB}+c\vv{IC}=\vv{0}$等价变形为
$(a+b+c)\vv{AI}=b\vv{AB}+c\vv{AC}$
即$\frac{a+b+c}{bc}\vv{AI}=\frac{\vv{AB}}{\abs{\vv{AB}}}+\frac{\vv{AC}}{\abs{\vv{AC}}}$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list