Forgot password?
 Register account
View 393|Reply 1

[数列] 一眼看尽`a_1=1,5a_n=3a_{n-1}+2`的通项

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-8-29 22:08 |Read mode
若数列`\{a_n\}`满足`a_1=1,5a_n=3a_{n-1}+2`,则`a_n=`___________.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-30 22:24
Last edited by isee 2021-8-30 22:45关键词:一阶线性递推数列的通项.


答案:`a_n=1`,此题因为`a_1=1`数值过于特殊,让其一眼望到底,以下解法是通法,`a_1\ne 1`亦成立.

提示:将`5a_n=3a_{n-1}+2`整理为“标准”递推形式`a_n=\frac 35a_{n-1}+\frac 25`.



法1(最大众)
(将"`a_n,a_{n-1}`"均用`x`替换,即`5x=3x+2`,有`x=1`,于是`\{a_n-1\}`为等比数列(`a_1\ne 1`时),且公比为`\frac 35`)

\begin{align*}
a_n&=\frac 35a_{n-1}+\frac 25\\
a_n-1&=\frac 35a_{n-1}+\frac 25-1\\
a_n-1&=\frac 35(a_{n-1}-1)
\end{align*}
反复迭代(直接用等比通项公式写结果亦可),下略




法2(也常见)
\begin{align*}
a_n&=\frac 35a_{n-1}+\frac 25\\
\frac {a_n}{(3/5)^n}&=\frac{a_{n-1}}{(3/5)^{n-1}}+\frac{2/5}{(3/5)^n}
\end{align*}
然后累加




法3(差分,同形异角)
\begin{align*}
a_n&=\frac 35a_{n-1}+\frac 25\\
a_{n-1}&=\frac 35a_{n-2}+\frac 25\\
\Rightarrow a_n-a_{n-1}&=\frac 35(a_{n-1}-a_{n-2})
\end{align*}
再累和



法4(先猜后证,数学归纳法)





法5(结果熟了)
认真求了结果的,已经知道了,此类`a_n=pa_{n-1}+q`的最后的通项结构一定是`a_n=A+B p^{n-1}`,代入`a_1`,`a_2`即可求出`A,B`.



法6(可能能微分,偶不会)

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit