|
kuing 发表于 2021-9-1 07:48
(2)令
\[f(x)=(x-x_1)(x-x_2)\cdots(x-x_n)=x^n-\sigma_1x^{n-1}+\sigma_2x^{n-2}-\cdots+(-1)^n\sigma_n,\]求导有
\[f'(x)=f(x)\sum_{i=1}^n\frac1{x-x_i}=nx^{n-1}-\sigma_1(n-1)x^{n-2}+\sigma_2(n-2)x^{n-3}-\cdots+(-1)^{n-1}\sigma_{n-1},\]
两边乘 `x^{k+1}`,得
\[f(x)\sum_{i=1}^n\frac{x^{k+1}}{x-x_i}=nx^{n+k}-\sigma_1(n-1)x^{n+k-1}+\sigma_2(n-2)x^{n+k-2}-\cdots+(-1)^{n-1}\sigma_{n-1}x^{k+1},\quad(*)\]由于
\[\frac{x^{k+1}}{x-x_i}=\frac{x^{k+1}-x_i^{k+1}}{x-x_i}+\frac{x_i^{k+1}}{x-x_i}=x^k+x_ix^{k-1}+x_i^2x^{k-2}+\cdots+x_i^{k-1}x+x_i^k+\frac{x_i^{k+1}}{x-x_i},\]故
\[\sum_{i=1}^n\frac{x^{k+1}}{x-x_i}=nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k+\sum_{i=1}^n\frac{x_i^{k+1}}{x-x_i},\]所以式 (*) 化为
\[\begin{aligned} &f(x)(nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k)+f(x)\sum_{i=1}^n\frac{x_i^{k+1}}{x-x_i}\\ ={}&nx^{n+k}-\sigma_1(n-1)x^{n+k-1}+\sigma_2(n-2)x^{n+k-2}-\cdots+(-1)^{n-1}\sigma_{n-1}x^{k+1}, \end{aligned} \quad(**)\]比较式 (**) 等号两边的 `x^n` 的系数,等号右边是 `(-1)^k\sigma_k(n-k)`,至于等号左边,注意后面 `f(x)\sum\limits_{i=1}^n\frac{x_i^{k+1}}{x-x_i}` 的次数小于 `n`,不必考虑,只需考虑前面的展开,即
\[\bigl( x^n-\sigma_1x^{n-1}+\sigma_2x^{n-2}-\cdots+(-1)^n\sigma_n \bigr)(nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k)\]的展开,易知其 `x^n` 的系数为 `S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kn`,所以
\[S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kn=(-1)^k\sigma_k(n-k),\]即
\[S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kk=0.\]
注:像(2)这么巧妙的证法我是想不出来嘀…… 对于(2),更巧妙的证法(只有一句话):
注意到$S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kk$展开后的每一项只含有$k$个变量$x_i$,要证明恒等式左边等于0只需要证明每个项的系数为0,固定一项,令该项中未出现的 $n-k$ 个变量$x_i$都为0,化为 $n=k$ 时的恒等式,左边等于0,该项的系数不变,从而该项的原来的系数为0. |
|