Forgot password?
 Register account
Author: abababa

[代数/数论] 请教牛顿公式的应用

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-2-9 04:24

6 分情形和归纳法的证明 (2003)

有兴趣的读者可以参考 Reichstein, Zinovy.“An inductive proof of Newton’s identities.” 的归纳法证明,以及 Ján Mináč. “Newton’s Identities Once Again!” The American MathematicalMonthly, Vol. 110, No. 3 (2003): 232-234. jstor.org/stable/3647937 的分情形证明。这些方法有时会显得缺乏动机且难以理解,但多研究几个视角往往益处大于弊处。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-2-9 04:24

7 矩阵证明

牛顿恒等式提供了通过矩阵幂的迹来计算矩阵的特征多项式的方法,也可以用矩阵的方法推导牛顿恒等式。感兴趣可参见 Kalman, Dan. “A Matrix Proof of Newton’s Identities.” Mathematics Magazine, Vol. 73, No. 4 (2000): 313-315. jstor.org/stable/2690982

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-2-9 05:02
kuing 发表于 2021-9-1 07:48
(2)令
\[f(x)=(x-x_1)(x-x_2)\cdots(x-x_n)=x^n-\sigma_1x^{n-1}+\sigma_2x^{n-2}-\cdots+(-1)^n\sigma_n,\]求导有
\[f'(x)=f(x)\sum_{i=1}^n\frac1{x-x_i}=nx^{n-1}-\sigma_1(n-1)x^{n-2}+\sigma_2(n-2)x^{n-3}-\cdots+(-1)^{n-1}\sigma_{n-1},\]
两边乘 `x^{k+1}`,得
\[f(x)\sum_{i=1}^n\frac{x^{k+1}}{x-x_i}=nx^{n+k}-\sigma_1(n-1)x^{n+k-1}+\sigma_2(n-2)x^{n+k-2}-\cdots+(-1)^{n-1}\sigma_{n-1}x^{k+1},\quad(*)\]由于
\[\frac{x^{k+1}}{x-x_i}=\frac{x^{k+1}-x_i^{k+1}}{x-x_i}+\frac{x_i^{k+1}}{x-x_i}=x^k+x_ix^{k-1}+x_i^2x^{k-2}+\cdots+x_i^{k-1}x+x_i^k+\frac{x_i^{k+1}}{x-x_i},\]故
\[\sum_{i=1}^n\frac{x^{k+1}}{x-x_i}=nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k+\sum_{i=1}^n\frac{x_i^{k+1}}{x-x_i},\]所以式 (*) 化为
\[\begin{aligned} &f(x)(nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k)+f(x)\sum_{i=1}^n\frac{x_i^{k+1}}{x-x_i}\\ ={}&nx^{n+k}-\sigma_1(n-1)x^{n+k-1}+\sigma_2(n-2)x^{n+k-2}-\cdots+(-1)^{n-1}\sigma_{n-1}x^{k+1}, \end{aligned} \quad(**)\]比较式 (**) 等号两边的 `x^n` 的系数,等号右边是 `(-1)^k\sigma_k(n-k)`,至于等号左边,注意后面 `f(x)\sum\limits_{i=1}^n\frac{x_i^{k+1}}{x-x_i}` 的次数小于 `n`,不必考虑,只需考虑前面的展开,即
\[\bigl( x^n-\sigma_1x^{n-1}+\sigma_2x^{n-2}-\cdots+(-1)^n\sigma_n \bigr)(nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k)\]的展开,易知其 `x^n` 的系数为 `S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kn`,所以
\[S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kn=(-1)^k\sigma_k(n-k),\]即
\[S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kk=0.\]

注:像(2)这么巧妙的证法我是想不出来嘀……
对于(2)$k<n$,还有一种证法,可以分析展开中各单项式来论证。参见 web.stanford.edu/~marykw/classes/CS250_W19/Netwons_Identities.pdf
Screenshot 2025-02-08 210303.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-2-9 05:07
kuing 发表于 2021-9-1 07:48
(2)令
\[f(x)=(x-x_1)(x-x_2)\cdots(x-x_n)=x^n-\sigma_1x^{n-1}+\sigma_2x^{n-2}-\cdots+(-1)^n\sigma_n,\]求导有
\[f'(x)=f(x)\sum_{i=1}^n\frac1{x-x_i}=nx^{n-1}-\sigma_1(n-1)x^{n-2}+\sigma_2(n-2)x^{n-3}-\cdots+(-1)^{n-1}\sigma_{n-1},\]
两边乘 `x^{k+1}`,得
\[f(x)\sum_{i=1}^n\frac{x^{k+1}}{x-x_i}=nx^{n+k}-\sigma_1(n-1)x^{n+k-1}+\sigma_2(n-2)x^{n+k-2}-\cdots+(-1)^{n-1}\sigma_{n-1}x^{k+1},\quad(*)\]由于
\[\frac{x^{k+1}}{x-x_i}=\frac{x^{k+1}-x_i^{k+1}}{x-x_i}+\frac{x_i^{k+1}}{x-x_i}=x^k+x_ix^{k-1}+x_i^2x^{k-2}+\cdots+x_i^{k-1}x+x_i^k+\frac{x_i^{k+1}}{x-x_i},\]故
\[\sum_{i=1}^n\frac{x^{k+1}}{x-x_i}=nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k+\sum_{i=1}^n\frac{x_i^{k+1}}{x-x_i},\]所以式 (*) 化为
\[\begin{aligned} &f(x)(nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k)+f(x)\sum_{i=1}^n\frac{x_i^{k+1}}{x-x_i}\\ ={}&nx^{n+k}-\sigma_1(n-1)x^{n+k-1}+\sigma_2(n-2)x^{n+k-2}-\cdots+(-1)^{n-1}\sigma_{n-1}x^{k+1}, \end{aligned} \quad(**)\]比较式 (**) 等号两边的 `x^n` 的系数,等号右边是 `(-1)^k\sigma_k(n-k)`,至于等号左边,注意后面 `f(x)\sum\limits_{i=1}^n\frac{x_i^{k+1}}{x-x_i}` 的次数小于 `n`,不必考虑,只需考虑前面的展开,即
\[\bigl( x^n-\sigma_1x^{n-1}+\sigma_2x^{n-2}-\cdots+(-1)^n\sigma_n \bigr)(nx^k+S_1x^{k-1}+S_2x^{k-2}+\cdots+S_{k-1}x+S_k)\]的展开,易知其 `x^n` 的系数为 `S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kn`,所以
\[S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kn=(-1)^k\sigma_k(n-k),\]即
\[S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kk=0.\]

注:像(2)这么巧妙的证法我是想不出来嘀……
对于(2),更巧妙的证法(只有一句话):
注意到$S_k-\sigma_1S_{k-1}+\sigma_2S_{k-2}-\cdots+(-1)^{k-1}\sigma_{k-1}S_1+(-1)^k\sigma_kk$展开后的每一项只含有$k$个变量$x_i$,要证明恒等式左边等于0只需要证明每个项的系数为0,固定一项,令该项中未出现的 $n-k$ 个变量$x_i$都为0,化为 $n=k$ 时的恒等式,左边等于0,该项的系数不变,从而该项的原来的系数为0.

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2025-2-9 10:34
谢谢两位的解析

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit