Forgot password?
 Register account
View 386|Reply 3

[函数] 这回怕真是得求出原函数吧

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-3 17:32 |Read mode
已知函数$f\left( x \right)$的导函数为\(f'( x )\),且对任意的实数$x$都有\(f’( x)=\mathrm e^{-x}( 2x+3)-f( x )\)($\mathrm e$是自然对数的底数),且$f( 0)=1$,若关于$x$的不等式\(f( x)-m<0\)的解集中恰有两个整数,则实数\(m\)的取值范围是(     )

C. \(\left( -\mathrm e,0 \right]\)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-3 17:46
可是这原函数实在是很容易求啊……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-3 17:56
回复 2# kuing

人教2019版把积分都删了,这种反向基本闻所未闻

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-6 23:43
\begin{align*}
f’( x)&=\mathrm e^{-x}( 2x+3)-f( x )\\
\mathrm e^{x}\left(f(x)+f’( x)\right)&=2x+3\\
\left(\mathrm e^{x}f(x)\right)'&=2x+3\\
\mathrm e^{x}f(x)&=x^2+3x+C
\end{align*}

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit