Forgot password
 Register account
View 397|Reply 3

[函数] 这回怕真是得求出原函数吧

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-9-3 17:32 |Read mode
已知函数$f\left( x \right)$的导函数为\(f'( x )\),且对任意的实数$x$都有\(f’( x)=\mathrm e^{-x}( 2x+3)-f( x )\)($\mathrm e$是自然对数的底数),且$f( 0)=1$,若关于$x$的不等式\(f( x)-m<0\)的解集中恰有两个整数,则实数\(m\)的取值范围是(     )

C. \(\left( -\mathrm e,0 \right]\)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-9-3 17:46
可是这原函数实在是很容易求啊……

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-9-3 17:56
回复 2# kuing

人教2019版把积分都删了,这种反向基本闻所未闻

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-9-6 23:43
\begin{align*}
f’( x)&=\mathrm e^{-x}( 2x+3)-f( x )\\
\mathrm e^{x}\left(f(x)+f’( x)\right)&=2x+3\\
\left(\mathrm e^{x}f(x)\right)'&=2x+3\\
\mathrm e^{x}f(x)&=x^2+3x+C
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:34 GMT+8

Powered by Discuz!

Processed in 0.011443 seconds, 22 queries