Forgot password?
 Register account
View 495|Reply 3

[函数] 一个不等式

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2021-9-4 14:38 |Read mode
Last edited by realnumber 2021-9-4 17:33\[ \sum_{i=1}^{n}i\ln{\frac{2i}{n}}\ge 0\]
在证明上面这个时,碰到一个样子不错的不等式$(1-t)^{1-t}(1+t)^{1+t}\ge 1 ,\abs t<1$
改为下面也成立.用了下数归
\[ \sum_{i=1}^{n}i\ln{\frac{2i}{n+1}}\ge 0\]




分享一下,小伙在考察某算法时间复杂度下限时,碰到的两个不等式

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-4 21:24
\[\sum_{i=1}^ni\ln\frac{2i}{n+1}=\frac{n+1}2\left( {\sum_{i=1}^n\frac i{n+1}\ln\frac{2i}{n+1}+\sum_{i=1}^n\frac{n+1-i}{n+1}\ln\frac{2(n+1-i)}{n+1}} \right),\]令
\[f(x)=x\ln(2x)+(1-x)\ln\bigl(2(1-x)\bigr),x\in(0,1),\]求导得
\[f'(x)=\ln(2x)-\ln\bigl(2(1-x)\bigr)=\ln\frac x{1-x}\riff f(x)\geqslant f(0.5)=0.\]

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 这个我是用数学归纳法做的

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-4 22:30
回复 1# realnumber

会不会是类题?
image_2021-09-04_223037.png

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 不知道,偶尔碰到的

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-4 22:33

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit