|
kuing
Posted 2021-9-4 21:24
\[\sum_{i=1}^ni\ln\frac{2i}{n+1}=\frac{n+1}2\left( {\sum_{i=1}^n\frac i{n+1}\ln\frac{2i}{n+1}+\sum_{i=1}^n\frac{n+1-i}{n+1}\ln\frac{2(n+1-i)}{n+1}} \right),\]令
\[f(x)=x\ln(2x)+(1-x)\ln\bigl(2(1-x)\bigr),x\in(0,1),\]求导得
\[f'(x)=\ln(2x)-\ln\bigl(2(1-x)\bigr)=\ln\frac x{1-x}\riff f(x)\geqslant f(0.5)=0.\] |
Rate
-
View Rating Log
|