Forgot password?
 Register account
View 485|Reply 2

[不等式] 求三元不等式的最小系数

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2021-9-6 23:07 |Read mode
906601.jpg

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-9-7 11:49
先试 111、011 之类的特殊值来猜 λ 的最值,这里目测应该是 011 的那个,就是1/8,然后证它成立,展开配schur估计可行。(爪机回复,只能提示)

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted 2022-4-27 09:56
Last edited by yao4015 2022-4-27 10:41注意到,当 $(x,y,z)=(1,1,0)$ 时可算出 $\lambda=\frac{1}{8}$. 所以只需证明
\[
xy(x^2+y^2)+yz(y^2+z^2)+zx(z^2+x^2)\leq \frac{1}{8}(x+y+z)^4.
\]
通过平方差公式,我们有
\begin{align*}
&(x+y+z)^4-(x^2+y^2+z^2-2xy-2yz-2zx)^2\\
&=(x^2+y^2+z^2+2xy+2yz+2zx)^2-(x^2+y^2+z^2-2xy-2yz-2zx)^2\\
&=(2x^2+2y^2+2z^2)(4xy+4yz+4zx)\\
&=8xy(x^2+y^2)+8yz(y^2+z^2)+8zx(z^2+x^2)+8xyz(x+y+z)\\
&\geq 8xy(x^2+y^2)+8yz(y^2+z^2)+8zx(z^2+x^2).
\end{align*}
所以有
\[
(x+y+z)^4\geq 8xy(x^2+y^2)+8yz(y^2+z^2)+8zx(z^2+x^2).
\]

一行装X证明就是
\[
(x+y+z)^4-8[xy(x^2+y^2)+yz(y^2+z^2)+zx(z^2+x^2)]=(x^2+y^2+z^2-2xy-2yz-2zx)^2+8xyz(x+y+z)
\]

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 11:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit