Forgot password?
 Register account
View 417|Reply 2

[函数] 求证$\tan 12^\circ\left(1+\frac 1{\sin 6^\circ}\right)=\tan 66^\circ$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-13 23:24 |Read mode
求证$\tan 12^\circ\left(1+\frac 1{\sin 6^\circ}\right)=\tan 66^\circ$.

来自:zhihu.com/question/486271758













用了不常用的正切半角公式与含60度的正切三角倍公式

\begin{align*}  
\tan 12^\circ\left(1+\frac 1{\sin 6^\circ}\right)&=\tan 66^\circ\\  
\iff \tan 12^\circ(1+\sin 6^\circ)&=\tan 66^\circ\sin 6^\circ\\  
\iff \tan 12^\circ(1-\cos 96^\circ)&=\tan 66^\circ\sin 6^\circ\\  
\iff \tan 12^\circ\frac{1-\cos 96^\circ}{\sin 96^\circ}&=\tan 66^\circ\frac{\sin 6^\circ}{\sin 96^\circ}\\  
\iff \tan 12^\circ\tan 48^\circ&=\tan 66^\circ\tan 6^\circ\\  
\iff \frac{\tan 36^\circ}{\tan 72^\circ}&=\frac{\tan 18^\circ}{\tan 54^\circ}\\  
\iff \tan 36^\circ\tan 54^\circ&=\tan 18^\circ\tan 72^\circ\\  
(\iff \tan 36^\circ\cot 36^\circ&=\color{red}{1}=\tan 18^\circ\cot18^\circ)\\  \end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-14 00:10
\begin{align*}
&\iff\frac{\tan12\du}{\sin6\du}=\tan66\du-\tan12\du\\
&\iff\frac{\sin12\du}{\cos12\du\sin6\du}=\frac{\sin66\du}{\cos66\du}-\frac{\sin12\du}{\cos12\du}\\
&\iff\frac{\sin12\du\cos66\du}{\sin6\du}=\sin66\du\cos12\du-\cos66\du\sin12\du\\
&\iff2\cos6\du\cos66\du=\sin54\du\\
&\iff4\cos6\du\cos(60\du+6\du)\cos(60\du-6\du)=2\sin54\du\cos54\du\\
&\iff\cos18\du=\sin108\du.
\end{align*}
PS、在 `2\cos6\du\cos66\du=\sin54\du` 之后也可以积化和差成 `\cos72\du+\frac12=\cos36\du`,两边的余弦值都是知道的,代入可知成立。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-14 00:38
回复 2# kuing


条条大路通罗马,也好也好

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit