|
kuing
Posted 2021-9-14 00:10
\begin{align*}
&\iff\frac{\tan12\du}{\sin6\du}=\tan66\du-\tan12\du\\
&\iff\frac{\sin12\du}{\cos12\du\sin6\du}=\frac{\sin66\du}{\cos66\du}-\frac{\sin12\du}{\cos12\du}\\
&\iff\frac{\sin12\du\cos66\du}{\sin6\du}=\sin66\du\cos12\du-\cos66\du\sin12\du\\
&\iff2\cos6\du\cos66\du=\sin54\du\\
&\iff4\cos6\du\cos(60\du+6\du)\cos(60\du-6\du)=2\sin54\du\cos54\du\\
&\iff\cos18\du=\sin108\du.
\end{align*}
PS、在 `2\cos6\du\cos66\du=\sin54\du` 之后也可以积化和差成 `\cos72\du+\frac12=\cos36\du`,两边的余弦值都是知道的,代入可知成立。 |
|