Forgot password
 Register account
View 625|Reply 3

[不等式] $\sum_{k=0}^{n}\abs{a_k}\le\sqrt{n}$

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2021-9-16 12:33 |Read mode
复系数多项式$f(x)=\sum_{k=0}^{n}a_kx^k$满足对任意的$\abs{z}\le1$都有$\abs{f(z)}\le1$,求证$\sum_{k=0}^{n}\abs{a_k}\le\sqrt{n}$

感觉和多项式关系更密切,但分类里没有多项式。

8

Threads

13

Posts

0

Reputation

Show all posts

xcx posted 2021-11-28 18:59
Last edited by xcx 2023-1-7 21:242019命题研讨会A17 曾卫国老师的题目 p.png javascript:;

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2021-11-29 10:27
回复 2# xcx

谢谢。$n\ge$的那个,第二行第一个求和号,接着上面的是不是应该为$\sum_{k=0}^{n-1}$?没有到$n$。
这个第三行的第二个等号,我暂时还没弄明白怎么等过去的。

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2021-11-30 15:55
回复 2# xcx

这个第二行的等式不对吧?如果令$n=1$,这时只有一个$\omega=\omega_0=1$,然后
\[\sum_{k=0}^{n-1}\left[\left(\sum_{i=0}^{n}a_i\omega_k^i\right)\left(\sum_{i=0}^{n}\overline{a_i\omega_k^i}\right)\right]=(a_0+a_1)(\bar{a}_0+\bar{a}_1)\]

但下一行的
\[\sum_{k=0}^{n}\left[\sum_{m=0}^{2n}\sum_{i+j=m}a_i\bar{a}_j\omega_k^i\omega_k^{-j}\right]=2(a_0+a_1)(\bar{a}_0+\bar{a}_1)\]

上下两行不相等啊,后面就都不对了吧。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:13 GMT+8

Powered by Discuz!

Processed in 0.014912 seconds, 26 queries