Forgot password?
 Register account
View 444|Reply 0

[几何] 三角形中点平行线证四点共园

[Copy link]

54

Threads

959

Posts

36

Reputation

Show all posts

乌贼 posted 2021-9-19 01:27 |Read mode
转自 tieba.baidu.com/p/7544587551
如图: 211.png
在$ \triangle ABC $中,$ D,E $分别为$ AB,AC $的中点,延长$ ED $至$ H $使$ DE=DH $,直线$ HC $与$ \triangle BDH $的外接圆交于点$ J $,在线段$ CD $上取点$ L $,使得$ BL $中点$ N $恰好在$ \triangle BDH $的外接圆上,求证:$ BJLC $四点共圆
证明:取$ BC $中点$ M $。知$ HDCM $为平行四边形\[ HM\px DC \]又\[ MN\px CL \]所以$ MNH $三点共线。有\[ \angle JBN=\angle JHN=\angle JCL \]故$ BJLC $四点共圆

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:40 GMT+8

Powered by Discuz!

Processed in 0.020113 second(s), 24 queries

× Quick Reply To Top Edit