Forgot password?
 Register account
View 654|Reply 10

[函数] 已知 $ (2x+\sqrt{1+4x^2})(3y+\sqrt{1+9y^2})=1$,求 $ x/y $ 的值

[Copy link]

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2021-9-27 16:50 |Read mode
Last edited by TSC999 2021-9-28 10:47已知 $ x, y$  为实数,且 $ (2x+\sqrt{1+4x^2})(3y+\sqrt{1+9y^2})=1$,求 $ x/y $ 的值。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-27 17:15
回复 1# TSC999


哈哈哈,还还以为只有(0,0)这一组解

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-9-27 17:43
所求的比值不确定吧?

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

 Author| TSC999 Posted 2021-9-27 18:05
回复 3# 色k
比值是确定的,x /y = -1.5, 我是用软件求得的这个结果,但是人工如何做,不会。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-9-27 18:15
回复 4# TSC999

不知你咋用的软件?你试试代 x=1 和 x=2 用软件算算 y 分别是多少

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

 Author| TSC999 Posted 2021-9-27 18:24
Last edited by hbghlyj 2025-3-9 18:23回复 5# 色k

x=1 时 y=-2/3;
x=2 时 y=-4/3;
x=-7.267 时 y=4.84467;
总之  x/y=-1.5。
只有一种特殊情况是 x=y=0 也可以。
用的软件是 mathematica,见下图。

$\begin{aligned} & \text { Solve }\left[\left(2 x-\sqrt{1+(2 x)^2}\right)\left(3 y-\sqrt{1+(3 y)^2}\right)==1,\{y\}\right] \\ & \left\{\left\{y \rightarrow-\frac{2 x}{3}\right\}\right\}\end{aligned}$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-27 18:41
回复 6# TSC999


    你这根号下x方里有个2,与主楼不同

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-27 19:00
回复 7# isee

如果题目是\[\left(2x+\sqrt{1+4x^2}\right)\left(3y+\sqrt{1+9y^2}\right)=1,\]这倒是好办,记$f(x)=\sqrt{1+x^2}+x=\frac 1{\sqrt {1+x^2}-x}$,显然$f(x)$是增函数,易知$f(x)\in (0,+\infty)$.

\begin{align*}
\left(2x+\sqrt{1+4x^2}\right)\left(3y+\sqrt{1+9y^2}\right)&=1\\
2x+\sqrt{1+4x^2}&=\frac 1{3y+\sqrt{1+9y^2}}\\
2x+\sqrt{1+4x^2}&=\sqrt{1+9y^2}-3y\\
f(2x)&=f(-3y)\\
2x&=-3y.
\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-27 19:58
回复 8# isee

对原式两边乘 `\sqrt {1+4x^2}-2x` 得
\[3y+\sqrt {1+9y^2}=\sqrt {1+4x^2}-2x,\]对原式两边乘 `\sqrt {1+9y^2}-3y` 得
\[2x+\sqrt {1+4x^2}=\sqrt {1+9y^2}-3y,\]以上两式相加得 `3y+2x=-2x-3y`。

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

 Author| TSC999 Posted 2021-9-28 10:45
isee 和 kuing 的方法都很妙! 收藏学习了!主楼原先的 $x^2$ 中少了个 4, 应是  $4x^2$,现在已更正。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2021-9-30 23:01
回复 1# TSC999


这么像反双曲...
令$2x=\sinh(p),3y=\sinh(q)$,那么就有
\[原式=(\sinh(p)+\sqrt{1+\sinh^2(p)})(\sinh(q)+\sqrt{1+\sinh^2(q)})\]
\[=(\sinh(p)+\cosh(p))(\sinh(q)+\cosh(q))=e^{p+q}=1\]
\[p=-q\]
\[2x=-3y\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 间接补回

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit