|
战巡
Posted 2021-9-28 00:02
回复 1# isee
首先$x\in M, 1\in M$,就有$x+1\in M, x-1\in M, \frac{1}{x+1}\in M, \frac{1}{x-1}\in M$,然后
\[\frac{1}{x-1}-\frac{1}{x+1}=\frac{2}{(x+1)(x-1)}\in M\]
\[\frac{(x+1)(x-1)}{2}=\frac{1}{2}-\frac{x^2}{2}\in M\]
由于$\frac{1}{2}\in M$是显然的,因此当$x\in M$时,会有$\frac{x^2}{2}\in M$
于是当$x,y\in M$时,会有$x+y\in M$,$\frac{(x+y)^2}{2}\in M$,同时又有$\frac{x^2}{2},\frac{y^2}{2}\in M$,故此$\frac{x^2}{2}+\frac{y^2}{2}\in M$,那么当然就有
\[xy=\frac{(x+y)^2}{2}-[\frac{x^2}{2}+\frac{y^2}{2}]\in M\] |
Rate
-
View Rating Log
|