Forgot password?
 Register account
View 435|Reply 2

[函数] 集合$M$,若$x$,$y\in M$,则$xy\in M$.

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-27 23:27 |Read mode
已知$M$是同时满足下列条件的集合:①$0\in M$,$1\in M$,②若$x$,$y\in M$,则$x-y\in M$;③若$x\in M$且$x\ne 0$,则$\frac 1x\in M$.
下列结论中正确的是__(1)(3)(4)___.
(1)$\frac 13\in M$;
(2)$-1\notin M$;
(3)若$x$,$y\in M$,则$x+y\in M$;
(4)若$x$,$y\in M$,则$xy\in M$.







(4)要写清晰了,还比较麻烦,大约思路是\[4xy=(x+y)^2-(x-y)^2.\]

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2021-9-28 00:02
回复 1# isee


首先$x\in M, 1\in M$,就有$x+1\in M, x-1\in M, \frac{1}{x+1}\in M, \frac{1}{x-1}\in M$,然后
\[\frac{1}{x-1}-\frac{1}{x+1}=\frac{2}{(x+1)(x-1)}\in M\]
\[\frac{(x+1)(x-1)}{2}=\frac{1}{2}-\frac{x^2}{2}\in M\]
由于$\frac{1}{2}\in M$是显然的,因此当$x\in M$时,会有$\frac{x^2}{2}\in M$

于是当$x,y\in M$时,会有$x+y\in M$,$\frac{(x+y)^2}{2}\in M$,同时又有$\frac{x^2}{2},\frac{y^2}{2}\in M$,故此$\frac{x^2}{2}+\frac{y^2}{2}\in M$,那么当然就有
\[xy=\frac{(x+y)^2}{2}-[\frac{x^2}{2}+\frac{y^2}{2}]\in M\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-28 01:18
回复 2# 战巡

looooong time no see

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit