Forgot password?
 Register account
View 454|Reply 2

[不等式] 证$a^2+b^2+c^2+2\sqrt{3abc}\leqslant 1$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-2 16:09 |Read mode
正实数 $a,b,c$ 满足 $a+b+c=1$,求证:$a^2+b^2+c^2+2\sqrt{3abc}\leqslant 1$.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-10-2 16:19
因为不想化为4次式子,尝试先保留根号
\begin{align*}
&a^2+b^2+c^2+2\sqrt{3abc}\leqslant 1\\
\iff& a^2+b^2+c^2+2\sqrt{3abc}\leqslant (a+b+c)^2\\
\iff& \sqrt{3abc}\leqslant ab+bc+ca\\
\iff& \sqrt{\frac {ab}c}+\sqrt{\frac {bc}a}+\sqrt{\frac {ca}b}\geqslant \sqrt{3}
\end{align*}
依然看不到出路,还是平方吧
\begin{align*}
\iff& \frac {ab}c+\frac {bc}a+\frac {ca}b+2(a+b+c)\geqslant 3\\
\iff& \frac {ab}c+\frac {bc}a+\frac {ca}b\geqslant 1
\end{align*}
这显然成立啊,两两组合用均值不等式,再三式相加即是.

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-10-2 16:27
由 $(x+y+z)^2\ge3(xy+yz+zx)$ 得 $(ab+bc+ca)^2\ge3abc(a+b+c)$
要熟记哦

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit