Forgot password
 Register account
View 593|Reply 1

[几何] 任意四面体的立体角

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2021-10-3 23:57 |Read mode
Last edited by hbghlyj 2022-2-18 00:04对于任意一个四面体OABC,其中O,A,B,C分别为四面体的四个顶点,求证:从O点观察三角形ABC的立体角Ω的公式为$$\tan\left( \frac{\Omega}{4}\right)=\sqrt{ \tan \left( \frac{s}{2}\right) \tan \left( \frac{s - \alpha}{2}\right) \tan \left( \frac{s - \beta}{2}\right) \tan \left( \frac{s - \gamma}{2}\right)}$$其中α=∠BOC,β=∠AOC,γ=∠AOB均为平面角,$s = \frac {1}{2} (\alpha + \beta + \gamma).$
例如:对于正四面体,$α=β=γ=\fracπ3,s=\fracπ2,\Omega=4 \tan ^{-1}\left(\sqrt{\tan ^3\left(\frac{\pi }{12}\right)}\right)=3 \cos ^{-1}\left(\frac{1}{3}\right)-\pi=\cos^{-1}\left(\frac{23}{27}\right)≈0.55129$ rad.

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-4-1 09:32
Todhunter, I. (1886). Spherical Trigonometry (5th ed.). Art.101—103
$$\tan {\tfrac {1}{4}}E={\sqrt {\tan {\tfrac {1}{2}}s\,\tan {\tfrac {1}{2}}(s-a)\,\tan {\tfrac {1}{2}}(s-b)\,\tan {\tfrac {1}{2}}(s-c)}}$$where $s=(a+b+c)/2$.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:06 GMT+8

Powered by Discuz!

Processed in 0.011495 seconds, 23 queries