Forgot password?
 Register account
View 482|Reply 2

[不等式] 不等式证明

[Copy link]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

大佬最帅 Posted 2021-10-6 21:40 |Read mode
Screenshot_20211006_213955.jpg
如何证明此不等式

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-10-6 22:14
还蛮简单……
因为 `3abc(a+b+c)\leqslant(ab+bc+ca)^2`,所以
\begin{align*}
&(a+b+c)\left( \frac1a+\frac1b+\frac1c \right)-\frac{2(a^2b^2+b^2c^2+c^2a^2)}{abc(a+b+c)}-4\\
={}&\frac{(a+b+c)(ab+bc+ca)}{abc}-\frac{2(ab+bc+ca)^2}{abc(a+b+c)}\\
={}&\frac{(a^2+b^2+c^2)(ab+bc+ca)}{abc(a+b+c)}\\
\geqslant{}&\frac{3(a^2+b^2+c^2)}{ab+bc+ca},
\end{align*}即
\[(a+b+c)\left( \frac1a+\frac1b+\frac1c \right)\geqslant\frac{3(a^2+b^2+c^2)}{ab+bc+ca}+\frac{2(a^2b^2+b^2c^2+c^2a^2)}{abc(a+b+c)}+4,\]显然上式强于原不等式。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-7 10:19
回复 2# kuing


    又见第二行的常见不等式,哈哈哈哈哈哈,这过程仅用一次放缩,妙呢

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit