Forgot password?
 Register account
View 498|Reply 1

[函数] 如何证明这两个复数相等?

[Copy link]

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2021-10-11 16:56 |Read mode
证明复数相等.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-10-11 19:22
记 `z=x+iy`,易得
\begin{align*}
x^2-2ixy+x-y(y-i)&=z+\bar z^2,\\
x^2+2ixy+x-y(y+i)&=\bar z+z^2,
\end{align*}由 `z` 在单位圆上知 `z\bar z=\abs z^2=1`,故
\begin{align*}
\LHS&=\frac {\bar z(z+\bar z^2)}{z(\bar z+z^2)}=\frac {1+\bar z^3}{1+z^3}=\frac {z^3+z^3\bar z^3}{z^3(1+z^3)}=\frac 1{z^3},\\
\RHS&=\frac {(\bar z+1)^3}{(z+1)^3}=\frac {(z\bar z+z)^3}{z^3(z+1)^3}=\frac 1{z^3}.
\end{align*}

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit