Forgot password
 Register account
View 419|Reply 0

[不等式] 硬不等式

[Copy link]

9

Threads

7

Posts

1

Reputation

Show all posts

anhcanhsat97 posted 2021-10-15 19:29 |Read mode
给定三个正实数 $a, b, c$ 使得 $a+b+c=1$。 证明
$$
\frac{36}{a^{2} b+b^{2} c+c^{2} a}+\frac{1}{abc} \geqslant 343+\frac{24\left(a^{ 2} b+b^{2} c+c^{2} a-6 abc\right)^{2}}{abc}
$$
当 $a=b=c$ 或
$$
\frac{a}{\sin ^{2} \frac{4 \pi}{7}}=\frac{b}{\sin ^{2} \frac{2 \pi}{7}}=\frac {c}{\sin ^{2} \frac{\pi}{7}}
$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 13:57 GMT+8

Powered by Discuz!

Processed in 0.018715 second(s), 21 queries

× Quick Reply To Top Edit