Forgot password?
 Register account
View 649|Reply 6

[数列] 数列和不等式的一个选择题

[Copy link]

1

Threads

0

Posts

5

Credits

Credits
5

Show all posts

玉竹马儿 Posted 2021-10-16 23:56 |Read mode
1634399741(1)..jpg
请问这个题目怎么做啊

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2021-10-18 09:36
Last edited by realnumber 2021-10-19 09:58可得数列{$a_n$}单调递增,$a_{n+1}-a_n=a_n(\frac{2}{1+a_n^2}-1)>0$
进一步得$0<-\ln a_{2021}<\frac{1}{2020}$--按楼下提示修改了下
只需要证明$0<-\ln a_1<1$,即$a_1>\frac{1}{e}$,假设$a_1<\frac{1}{e}$,那么
$a_2<0.64805,a_3<0.91277$,此时$a_1+a_2+a_3<1.92870$与等式和为2020矛盾(此时2021项正数和已经不到2020了).
因此C对的

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-10-18 14:03
回复 2# realnumber

下标是 2021

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2021-10-18 14:29
期待ku版出手^_^

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-10-18 15:36
求通项知 `a_n` 以极快的速度趋向 1,所以 `\ln a_{2021}` 极其接近 0,因此可以预见选 C,要证明它,只需随便给 `a_1` 找个下界应该就 OK。

解:显然 `a_n<1` 且 `a_2<2a_1`,所以
\[2020=a_1+a_2+\cdots+a_{2021}<a_1+2a_1+2019\riff a_1>\frac13,\]然后常规地球球通项
\begin{align*}
\edr
1+a_{n+1}&=\frac{(1+a_n)^2}{a_n^2+1},\\
1-a_{n+1}&=\frac{(1-a_n)^2}{a_n^2+1}
\endedr
&\riff\frac{1+a_{n+1}}{1-a_{n+1}}=\left( \frac{1+a_n}{1-a_n} \right)^2\\
&\riff\frac{1+a_n}{1-a_n}=\left( \frac{1+a_1}{1-a_1} \right)^{2^{n-1}},
\end{align*}由 `a_1>1/3` 得 `1+a_1>2(1-a_1)`,故
\[\frac{1+a_n}{1-a_n}>2^{2^{n-1}}\geqslant2^n,\](将 `2^{n-1}` 放为 `n` 纯粹为了代码好打)解得
\[a_n>\frac{2^n-1}{2^n+1}=1-\frac2{2^n+1}>1-2^{1-n},\]易证 `\ln(1-x)>1-\frac1{1-x}=\frac{-1}{x^{-1}-1}`,所以
\[0>\ln a_n>\ln(1-2^{1-n})>\frac{-1}{2^{n-1}-1},\]再乘上 `0>\ln a_1>-\ln3`,得到
\[\ln a_1\ln a_{2021}<\frac{\ln3}{2^{2020}-1},\]右边与 1/2020 相比简直不是一个数量级。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-18 18:11
怕是浙江高考月考题吧

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2021-10-18 18:43
是THUSSAT 10月试题  这个试卷风格一直有强烈的浙江味道

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit