|
Last edited by isee 2021-10-18 23:37题:若 `x,y\in\mathbb R_+,` 则 `\frac {xy+y}{x^2+y^2+1}` 的最大值为______.
注意 `\frac {xy+y}{x^2+y^2+1}=\frac {xy+y\cdot1}{x^2+y^2+1^2}=\frac {xy+y\color{red}z}{x^2+y^2+\color{red}{z^2}},\color{red}{z=1}` 这样一来就反而易理解了——即是点评中的链接(题).
(均值不等式)方向0,将分母缩小(由和转化为积)
`x^2+y^2+1=\left(x^2+\frac {y^2}2\right)+\left(\frac {y^2}2+1\right)\geqslant\sqrt 2xy+\sqrt 2y=\sqrt{2}(xy+y),` 即 `\frac {xy+y}{x^2+y^2+1}\leqslant \frac {\sqrt 2}2.` 取“=”时, `x=\frac y{\sqrt 2}=1` .
(怎么凑出这两均值的呢,其实可以待定系数`x^2+y^2+1=(x^2+\color{blue}m y^2)+\color{blue}{(1-m)}y^2+1\geqslant2\color{blue}{\sqrt m} xy+2\color{blue}{\sqrt {1-m}}y,` 令 `\sqrt m=\sqrt {1-m}` )
(均值不等式)方向0.5,将分子放大(由积化为和)
\begin{align*} xy+1&=\frac {\sqrt 2}2\left({2\cdot x\cdot \frac y{\sqrt 2}+2\cdot y\cdot \frac 1{\sqrt 2}}\right)\\ &\leqslant \frac {\sqrt 2}2 \left(\left(x^2+ \frac {y^2}2\right)+\left(\frac {y^2}2+1\right)\right)\\ &=\frac {\sqrt 2}2(x^2+y^2+1), \end{align*}
即 `\frac {xy+y}{x^2+y^2+1}\leqslant\frac {\sqrt 2}2.`
(齐次式消元)方向1,令 `x=my,1=ny,` 则
\[\frac {xy+y\cdot1}{x^2+y^2+1^2}=\frac {m+n}{m^2+1+n^2}=\frac {1}{\frac {m^2+n^2+1}{m+n}}\leqslant \frac {1}{\frac {\left((m+n)/2\right)^2+1}{m+n}}\leqslant \frac 1{\sqrt 2}.\]
(均值不等式变式)方向2 :主要是写着写着方向1中的第一个不等号是 `Q_2\geqslant A_2`的等价形式,那就试试均值不等变式: `a^2+b^2\geqslant 2ab\iff 2(a^2+b^2)\geqslant (a+b)^2.`
于是有\[(xy+y)^2=y^2\color{blue}{(x+1)^2}\leqslant y^2\cdot \color{blue}{2(x^2+1)}=2\cdot (x^2+1)y^2\leqslant 2\left(\frac{x^2+1+y^2}2\right)^2,\]
即 `\frac {xy+y}{x^2+y^2+1}\leqslant\frac {\sqrt 2}2.`
========
以下是凑数的,(不推荐,否则,一概不负责任)
(对称式)方向3,式子 `\frac {xy+y\cdot 1}{x^2+y^2+1}` 是关于 `x,1` 的对称式,(即 `x` 换成 `1,` `1` 换成 `x` 求式值不变),从而当求式最大时,必有 `x=1,` 于是求式化为 `\frac {2y}{y^2+2}=\frac 2{y+\frac 2y}\leqslant \frac {\sqrt 2}2.`
(主元)方向 `\pi` :令 `t=\frac {xy+y}{x^2+y^2+1}` 整理为关于 `y` 的二次式子 `ty^2-(x+1)y+tx^2+t=0,` 于是 `\exists x`(这个存在,就是凑数的,哈哈哈哈哈), 使得 `\Delta=(x+1)^2-4t(tx^2+t)\geqslant 0\Rightarrow 4t^2\leqslant \left(\frac {(x+1)^2}{x^2+1}\right)_{\max}=2.`
(作差配方)方向5:猜测出最大值时, `\frac {xy+y}{x^2+y^2+1}-\frac {\sqrt 2}2` 之后通分配方即可(因为所有的均值不等式均可以改写成平方形式,(想想均值不等式的最基本证明即明)),具体略. |
|