Forgot password?
 Register account
View 572|Reply 4

[几何] 直三棱柱的截面积

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-19 19:27 |Read mode
就是给 @乌贼 定制的  

来自 知乎提问 虽已有综合法与坐标法,也还亲自可以写写



题:直三棱柱 `ABC-A_1B_1C_1` 中,若 `BC=2AB=2`,`AA_1=AC=\sqrt 3`,`M` 是 `B_1C_1` 中点,过 `AM` 作这个三棱柱的截面,当截面与平面 `ABC` 所成二面角最小时,这个截面的面积为(     )

B. `\frac {5\sqrt 3}6`
jm.jpg

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-10-19 21:36
1111-7.png
延长$ A_1B_1 $至$ D $,使$ A_1B_1=B_1D $,延长$ DM $交$ A_1C_1 $于$ E $,$ N $为$ BB_1 $与$ AD $交点。则截面$ AEMN $与平面$ ABC $所成的二面角最小且$ AM\perp DE $。有\[ S_{AEMN}=\dfrac{1}{2}AM\cdot ME+\dfrac{1}{4}AM\cdot DM=\dfrac{5\sqrt{3}}{6} \]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-10-19 22:02
Last edited by isee 2021-10-19 22:09回复 2# 乌贼


而恰巧就是何时最小是难想的,还需补充下理由:$AM$(或 $A_1M$) 是到$ME$距离最大值

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-10-20 10:03
回复 3# isee
这有什么难想的,设$ l $为在平面$ ABC $内过$ A $的直线,直线$ l $与$ AM $组成的平面与平面$ ABC $的二面角为$ \theta  $,就有当点$ M_1 $到直线$ l $的距离最大时$ \theta  $最小,也就是当$ A_1B_1=B_1D,DM\perp A_1M $时。平面有了,再画出截面。

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-10-20 10:45
回复 4# 乌贼


所以此题仿佛就是为你定制的,我当时还是有空间向量算好一会~

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit