|
Last edited by player1703 2021-11-14 04:04$l_1: -y + 2 + k(x-1) = 0$, $l_2: x-3 + k(y-2) = 0$. 可知$l_1, l_2$ 分别过点$A(1,2)$与点$B(3,2)$, 且$l_1\perp l_2$. 所以点$P$轨迹是$AB$为直径的圆. $P$到原点距离最大最小值分别为$2\sqrt2\pm1$.
一般地, 假设直线$A_1x+B_1y+C_1=0$与$A_2x+B_2y+C_2=0$相交且交点为$(x_0,y_0)$也就是说$(x_0,y_0)$同时满足$A_1x_0+B_1y_0+C_1=0$与$A_2x_0+B_2y_0+C_2=0$, 则:
\begin{equation}\label{eqn}
A_1x+B_1y+C_1+\lambda(A_2x+B_2y+C_2)=0, \lambda \inR
\end{equation}
表示经过$(x_0,y_0)$的直线系, 因为$(x_0,y_0)$显然满足方程\eqref{eqn}. 但要注意这个直线系不包括直线$A_2x+B_2y+C_2=0$, 所以上题点$P$的轨迹其实还要去掉点$(1,2)$.当然去掉点$(1,2)$不影响最后的结果. |
|