Last edited by yao4015 2021-11-3 11:05回复 5# kuing
试做了下 5# 的题,用的标准的混合变量法.
设 $a=max\{a,b,c\}, \ s=\dfrac{b+c}{2}$. 于是 $s\leq \dfrac{1}{3},\ bc\leq \dfrac{1}{9}$.
进一步,令
\[
f(a,b,c)=\dfrac{1}{7+18a^2}+\dfrac{1}{7+18b^2}+\dfrac{1}{7+18c^2}.
\]
我们计划去证明
\[
f(a,b,c)\leq f(a,s,s)\leq \dfrac{1}{3}.
\]
计算
\begin{align*}
f(a,s,s)-f(a,b,c)&=\left(\dfrac{1}{7+18s^2}-\dfrac{1}{7+18b^2} \right)+\left(\dfrac{1}{7+18s^2}-\dfrac{1}{7+18c^2} \right)\\
&=\dfrac{1}{2(7+18s^2)}\left (\dfrac{9(3b+c)(b-c)}{7+18b^2} + \dfrac{9(b+3c)(c-b)}{7+18c^2} \right)\\
&=\dfrac{9(b-c)^2(7-18bc-36s^2)}{(7+18s^2)(7+18b^2)(7+18c^2)}
\end{align*}
因为 $bc\leq \dfrac{1}{9},\ s^2\leq \dfrac{1}{9}$, 我们有
\[
7-18bc-36s^2\geq 7-\dfrac{18}{9}-\dfrac{36}{9}=1>0,
\]
所以 $f(a,b,c)\leq f(a,s,s)$.
另一方面
\[
\dfrac{1}{3}-f(1-2s,s,s)=\dfrac{4(1-6s)^2(1-3s)^2}{3(7+18(1-2s)^2)(7+s^2)}\geq 0.
\]
等号仅当 $(a,b,c)=\left(\dfrac{1}{3},\dfrac{1}{3},\dfrac{1}{3}\right)$ 或 $\left(\dfrac{2}{3},\dfrac{1}{6},\dfrac{1}{6}\right)$的置换时取到. |