Forgot password?
 Register account
View 588|Reply 9

[函数] 函数极限

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2021-11-7 11:00 |Read mode
Last edited by hbghlyj 2025-3-19 08:27求函数极限 $\lim _{x \to+\infty} \frac{(x+\sin x)^2}{e^{2 x}}$

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-11-7 11:10
显然为0

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2021-11-7 11:12
也觉得是零,过程呢?洛必达吗?

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2021-11-7 11:14
回复 2# 色k


    问题是高中有洛必达吗?当然,直观看,显然是0。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-11-7 11:22
放缩一下也显然

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2021-11-7 11:36
回复 5# 色k


   

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-11-7 14:08
`x>0` 时 `\sin x<x` 以及 `e^x>1+x+\frac 12x^2>x+\frac 12x^2`,所以 `\left( \frac {x+\sin x}{e^x} \right)^2<\left( \frac 4{2+x} \right)^2`。

2

Threads

4

Posts

32

Credits

Credits
32

Show all posts

IkeJay Posted 2021-11-15 09:33
Last edited by hbghlyj 2025-3-19 08:42这样可以吗\begin{aligned}
& \lim _{x \to+\infty} \frac{(x+\sin x)^2}{e^{2 x}} \\
& \text { 当 } x \to+\infty, x+\sin x \sim x \\
& \therefore \text { 原 }=\lim _{x \to+\infty} \frac{x^2}{\rho^{2 x}}=\lim _{x \to+\infty} \frac{2 x}{2 e^{2 x}}=\lim _{x \to+\infty} \frac{2}{4 \rho^{2 x}}=0
\end{aligned}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-11-15 17:32
回复 8# IkeJay

我觉得可以,只是无穷大的代换很少见——虽然可以转换成无穷小.


分成$$\lim_{x\to +\infty}\left(\frac{x}{\mathrm e^x}+\frac{\sin x}{\mathrm  e^x}\right)\cdot \lim_{x\to +\infty}\left(\frac{x}{\mathrm  e^x}+\frac{\sin x}{\mathrm  e^x}\right),$$就是显然的了

2

Threads

4

Posts

32

Credits

Credits
32

Show all posts

IkeJay Posted 2021-11-15 22:12
回复 9# isee


    确实啊

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit