|
IkeJay
posted 2021-11-15 09:33
Last edited by hbghlyj 2025-3-19 08:42这样可以吗\begin{aligned}
& \lim _{x \to+\infty} \frac{(x+\sin x)^2}{e^{2 x}} \\
& \text { 当 } x \to+\infty, x+\sin x \sim x \\
& \therefore \text { 原 }=\lim _{x \to+\infty} \frac{x^2}{\rho^{2 x}}=\lim _{x \to+\infty} \frac{2 x}{2 e^{2 x}}=\lim _{x \to+\infty} \frac{2}{4 \rho^{2 x}}=0
\end{aligned} |
|