Forgot password
 Register account
View 602|Reply 9

[函数] 函数极限

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2021-11-7 11:00 |Read mode
Last edited by hbghlyj 2025-3-19 08:27求函数极限 $\lim _{x \to+\infty} \frac{(x+\sin x)^2}{e^{2 x}}$

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2021-11-7 11:10
显然为0

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2021-11-7 11:12
也觉得是零,过程呢?洛必达吗?

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2021-11-7 11:14
回复 2# 色k


    问题是高中有洛必达吗?当然,直观看,显然是0。

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2021-11-7 11:22
放缩一下也显然

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2021-11-7 11:36
回复 5# 色k


   

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-11-7 14:08
`x>0` 时 `\sin x<x` 以及 `e^x>1+x+\frac 12x^2>x+\frac 12x^2`,所以 `\left( \frac {x+\sin x}{e^x} \right)^2<\left( \frac 4{2+x} \right)^2`。

2

Threads

4

Posts

0

Reputation

Show all posts

IkeJay posted 2021-11-15 09:33
Last edited by hbghlyj 2025-3-19 08:42这样可以吗\begin{aligned}
& \lim _{x \to+\infty} \frac{(x+\sin x)^2}{e^{2 x}} \\
& \text { 当 } x \to+\infty, x+\sin x \sim x \\
& \therefore \text { 原 }=\lim _{x \to+\infty} \frac{x^2}{\rho^{2 x}}=\lim _{x \to+\infty} \frac{2 x}{2 e^{2 x}}=\lim _{x \to+\infty} \frac{2}{4 \rho^{2 x}}=0
\end{aligned}

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-11-15 17:32
回复 8# IkeJay

我觉得可以,只是无穷大的代换很少见——虽然可以转换成无穷小.


分成$$\lim_{x\to +\infty}\left(\frac{x}{\mathrm e^x}+\frac{\sin x}{\mathrm  e^x}\right)\cdot \lim_{x\to +\infty}\left(\frac{x}{\mathrm  e^x}+\frac{\sin x}{\mathrm  e^x}\right),$$就是显然的了

2

Threads

4

Posts

0

Reputation

Show all posts

IkeJay posted 2021-11-15 22:12
回复 9# isee


    确实啊

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:56 GMT+8

Powered by Discuz!

Processed in 0.028200 seconds, 24 queries