Forgot password
 Register account
View 447|Reply 3

[不等式] 一眼看尽四元不等式$\frac 1{abc}+\frac 1d$的最小值

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-11-11 14:44 |Read mode
正实数 $a,b,c,d$ 满足 $a+b=1$,$c+d=1$,则 $\dfrac 1{abc}+\dfrac 1d$ 的最小值为__9__.

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-11-11 14:48
看着字母较多,事实上 $a,b$ 与 $c,d$ 不相往来$$\frac 1{abc}+\frac 1d\geqslant \frac 1{\left(\frac {a+b}2\right)^2c}+\frac 1d=\frac 4c+\frac 1d\geqslant \frac {(2+1)^2}{c+d}=9.$$

PS:如果将条件改为 $a+b+c+d=1$ 不知是否还有最小值.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-11-11 17:43
PS:如果将条件改为 $a+b+c+d=1$ 不知是否还有最小值.
isee 发表于 2021-11-11 14:48
有的,照样操作即可
\[\frac 1{abc}+\frac 1d\geqslant \frac 1{\left(\frac {a+b}2\right)^2c}+\frac 1d=\frac{\left(\frac2{a+b}\right)^2}c+\frac 1d\geqslant \frac {\left(\frac2{a+b}+1\right)^2}{c+d}=\frac{(2+t)^2}{(1-t) t^2},\]其中 `t=a+b\in(0,1)`,然后求这个函数的最小值,是可求的。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-11-11 18:40
回复 3# kuing


是哦,奇妙相往来了~

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:06 GMT+8

Powered by Discuz!

Processed in 0.011737 seconds, 22 queries