Forgot password?
 Create new account
View 313|Reply 1

[函数] 不等式证明

[Copy link]

2

Threads

4

Posts

32

Credits

Credits
32

Show all posts

IkeJay Posted at 2021-11-15 10:28:48 |Read mode
Last edited by hbghlyj at 2025-3-19 08:59:38证明:$\sin \pi x \leqslant \frac{\pi^2}{2} x(1-x)$,其中 $x \in[0,1]$
这是我的证法,其实是想用凹凸性证的,却看不出来怎么证
\[
\begin{aligned}
& \text{令} f(x)=\sin\pi x-\frac{\pi^2}{2} x+\frac{\pi^2}{2} x^2 \\
& f'(x)=\pi \cdot \cos \pi x-\frac{\pi^2}{2}+\pi^2x \\
& f''(x)=-\pi^2 \cdot \sin\pi x+\pi^2 \geq 0 .
\end{aligned}
\]
$\therefore f'(x)$ 在 $x \in[0,1]$ 上递增
\[
f'(0)=\pi-\frac{\pi^2}{2}<0 \quad f^{\prime}(1)=\frac{\pi^2}{2}-\pi>0 .
\]
\[
\therefore \text {存在 } x_0 \in[0,1] , f'(x_0)=0 \text {. }
\]
$f(0)=0 \quad f(1)=0 \therefore f(x)_\max=f(0)=f(1)=0$ .
\[
\therefore f(x) \leqslant 0
\]
即 $\sin\pi x-\frac{\pi^2}{2} x+\frac{\pi^2}{2}x^2 \leq 0$
$\therefore  \sin\pi x<\frac{\pi^2}2x(1-x)$ 得证。

1

Threads

19

Posts

344

Credits

Credits
344
QQ

Show all posts

ZCos666 Posted at 2025-3-19 09:50:02
作变换$x\to\dfrac{x}{\pi}$,即证
\[ 0\le x\le\pi:\sin{x}\le\dfrac{x(\pi-x)}{2} \]
熟知$x\ge0:\sin{x}\le x,x\le\pi:\sin{x}\le\pi-x$,由对称性,只需考虑
\[ \begin{aligned}
0\le x\le\pi-2&:\sin{x}\le\min(x,\pi-x)\le\dfrac{x(\pi-x)}{2}\\
\pi-2\le x\le\dfrac{\pi}{2}&:\sin{x}\le1\le\pi-2\le\dfrac{x(\pi-x)}{2}
\end{aligned} \]
得证

手机版Mobile version|Leisure Math Forum

2025-4-21 14:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list