Forgot password?
 Register account
View 608|Reply 5

[函数] 解方程$x=\sqrt{x-\frac 1x}+\sqrt{1-\frac 1x}$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-11-20 22:41 |Read mode
源自知提问,反而好奇这个数列如何建立....


题:已知 $x=\sqrt{x-\frac 1x}+\sqrt{1-\frac 1x}$,求 $x$.

依题不难知 $x>1.$

可考虑直接平方去根号

\begin{align*} x&=\sqrt{x-\frac 1x}+\sqrt{1-\frac 1x} \\[1em] x-\sqrt{1-\frac 1x}&=\sqrt{x-\frac 1x}\\[1em] x^2-2x\sqrt{1-\frac 1x}+1-\frac 1x&=x-\frac 1x\\[1em] x^2-x+1&=2x\sqrt{1-\frac 1x}\\[1em] x^4+x^2+1-2x^3+2x^2-2x&=4x^2-4x\\[1em] x^4-2x^3-x^2+2x+1&=0\\[1em] (x^2-x-1)^2&=0\\[1em] \Rightarrow x&=\frac {1+\sqrt 5}2. \end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-11-20 22:52
那个柯西解法眼前一亮
竟然是由不等式题变出来的

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-11-20 23:06
Last edited by isee 2021-11-20 23:20回复 2# kuing



赞之后,我似乎突然明白我最后那个平方的由来~

真是奇妙

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-2-13 00:02
无意中发现,其实我之前也柯西过:forum.php?mod=viewthread&tid=6597#pid33851

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-2-19 21:38
回复 4# kuing


我也碰到一个了,又,源自知乎提问



:解方程 ​$x\sqrt{4-y^2}-11=y\sqrt{9-z^2}+z\sqrt{9-x^2}.$



由均值不等式 $ab\leqslant \frac {a^2+b^2}2,$ 有

\begin{align*} 11&=x\sqrt{4-y^2}-y\sqrt{9-z^2}-z\sqrt{9-x^2}\\[1em] &\leqslant \frac {x^2+4-y^2}2+\frac {(-y)^2+9-z^2}2+\frac {(-z)^2+9-x^2}2=11, \end{align*}

取"="时, $x^2=4-y^2,$ $y^2=9-z^2,$ $z^2=9-x^2,$

即此方程的解为 $$x=\sqrt 2,y=-\sqrt 2,z=-\sqrt 7.$$

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2022-2-19 22:16
回复 5# isee

这个就简单太多啦

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit