Forgot password?
 Register account
View 493|Reply 2

[几何] 螺旋线投影

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-11-25 05:18 |Read mode
Last edited by hbghlyj 2021-11-26 05:15将参数式为 $(\cos t,\sin t,t)$ 的螺旋线投影到平面 $z=kx$ 上,使投影曲线有两个"环"相切,求这个平面.
把投影曲线关于$y$轴旋转到$y$-$z$平面上去:
  1. RotationTransform[ArcTan[k], {0, 1, 0}][
  2. ComplexExpand[{Cos[t], Sin[t], t} -
  3.    Projection[{Cos[t], Sin[t], t}, {1, 0, k}]]]
Copy the Code
得到参数式$\left(0,\sin t,\frac{t-k \cos t}{\sqrt{k^2+1}}\right)$. 以$y$为横轴,$z$为纵轴画图:
(在线编译1|在线编译2)

相邻的环相切,
相隔着1个环相切,
相隔着2个环相切,
相隔着3个环相切...
$k$值呈等差数列,公差为$\pi$
注意到切点不在$z$轴上,但是很接近$z$轴,可令它在$z$轴上,以求出一个近似值:
当$t=0,\pi,2\pi$时,纵坐标为$y(0)=-\frac{k}{\sqrt{k^2+1}},y(\pi)=\frac{k+\pi }{\sqrt{k^2+1}},y(2\pi)=\frac{2 \pi -k}{\sqrt{k^2+1}}$.
令$y(0)+y(\pi)=2y(2\pi)$,求出$k=\frac{3\pi}2\approx4.71$,而真正相切时的$k$值约为4.6.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-11-25 10:34
回复 1# hbghlyj

好玩儿

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-11-26 05:08
下面求出使相邻的环相切的$k$值.
我们知道,使相邻的环能够相切的$k$值,是使相邻的环能够相交的$k$的最小值.
令$y(t)=y(\pi-t)$,即$t-k \cos t=(\pi -t)-k \cos (\pi -t)$,解得$k=\left(t-\frac\pi2\right) \sec t$.
右边是$t$的函数,当$\frac32\pi<t<2\pi$,它的最小值约为4.60334,这就是所求的$k$值.

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit