Forgot password?
 Register account
View 568|Reply 5

[几何] 三条高对应相等能证明全等吗

[Copy link]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

大佬最帅 Posted 2021-11-27 10:35 |Read mode
两个三角形三条高线对应相等,可以判定全等吗
角分线呢?

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2021-11-27 13:30
回复 1# 大佬最帅

可以

假设两个三角形,三边分别为$a,b,c$和$a',b',c'$,对应的高分别为$h_a,h_b,h_c$和$h_a',h_b',h_c'$,其中$h_a=h_a',h_b=h_b',h_c=h_c'$

那么有
\[2S=ah_a=bh_b=ch_c\]
\[2S'=a'h_a'=b'h_b'=c'h_c'\]
\[a:b:c=\frac{1}{h_a}:\frac{1}{h_b}:\frac{1}{h_c}=\frac{1}{h_a'}:\frac{1}{h_b'}:\frac{1}{h_c'}=a':b':c'\]
这就足以说明两个三角形相似了,相似之后高又相等,那就只能全等

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-11-27 17:43
高线和中线的都比较简单,角平分线就比较麻烦。

以下的证明思路受「hejoseph」的资料启发。

设三角形的三边为 `a`, `b`, `c`,对应的内角平分线长分别为 `w_a`, `w_b`, `w_c`,记
\[\lambda_1=\frac a{a+b+c},\,\lambda_2=\frac b{a+b+c},\,\lambda_3=\frac c{a+b+c},\]则显然有 `\lambda_1`, `\lambda_2`, `\lambda_3\in(0,1/2)` 且 `\lambda_1+\lambda_2+\lambda_3=1`。

由角平分线长公式,有
\begin{align*}
w_a&=\frac{\sqrt{bc(a+b+c)(b+c-a)}}{b+c}\\
&=\sqrt{\frac{abc}{a+b+c}}\cdot\frac{a+b+c}{a+b+c-a}\cdot\sqrt{\frac{a+b+c-2a}a}\\
&=\sqrt{\frac{abc}{a+b+c}}\cdot\frac1{1-\lambda_1}\cdot\sqrt{\frac{1-2\lambda_1}{\lambda_1}},
\end{align*}平方整理得
\[\frac{(1-\lambda_1)^2\lambda_1}{1-2\lambda_1}w_a^2=\frac{abc}{a+b+c},\]对 `w_b`, `w_c` 同理,记 `\frac{abc}{a+b+c}=t`,即有
\[\frac{(1-\lambda_1)^2\lambda_1}{1-2\lambda_1}w_a^2
=\frac{(1-\lambda_2)^2\lambda_2}{1-2\lambda_2}w_b^2
=\frac{(1-\lambda_3)^2\lambda_3}{1-2\lambda_3}w_c^2=t,\]因为当 `0<x<1/2` 时
\[\left( \frac{(1-x)^2x}{1-2x} \right)'=\frac{(1-x)(4x^2-3x+1)}{(1-2x)^2}>0,\]由此可见,当 `w_a`, `w_b`, `w_c` 固定时,`\lambda_1`, `\lambda_2`, `\lambda_3` 关于 `t` 递增,但它们又得满足 `\lambda_1+\lambda_2+\lambda_3=1`,这就说明 `t` 是唯一的,因此 `\lambda_1`, `\lambda_2`, `\lambda_3` 也是唯一的,所以 `a`, `b`, `c` 的比例是唯一的,也就是说如果两个三角形的内角平分线长度对应相等时,这两个三角形相似,但如果相似比不是 `1`,两个三角形的角平分线不会相等,所以这两个三角形必然全等。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-24 08:09
Last edited by hbghlyj 2022-7-24 16:32[Ref. 1] On existence of a triangle with prescribed bisector lengths
S. F. Osinkin
Arxiv

[Ref. 2] A Purely Geometric Proof of the Uniqueness of a Triangle With Prescribed Angle Bisectors
$type FG200828.pdf (36.41 KB, Downloads: 55)

[Ref. 3] The Existence of a Triangle with Prescribed Angle Bisector Lengths
$type 2325126.pdf (230.75 KB, Downloads: 54)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-24 23:32
[Ref. 1] Full text: Given three arbitrary positive numbers $m, n, p$, does there exist a triangle with angle bisectors of length $m, n, p$ ? The answer is YES! Moreover, the triangle is unique up to an isometry. This contrasts with related results for the triangle. The median lengths $m, n, p$ satisfy $m< n+p$ (and the two other cyclic inequalities) and the altitude lengths satisfy $1 / m<1 / n+1 / p$; thus the lengths $m, n, p$ cannot be arbitrary in these cases. The referee has kindly submitted to us several bibliographic notes which show the long history of this problem. Brocard proposed in 1875 in the Nouvelle Correspondance Mathématique the problem of constructing such a triangle. The problem was reduced to that of solving an equation of degree 16 by F. J. Van Den Berg (Nieuw Archief voor Wiskunde, 1889). In 1896, P. Barbarin showed in Mathesis that the equation can be chosen to be of degree 14 and that it is irreducible in general. He also showed that this equation becomes an irreducible cubic when two of the angle bisector lengths are equal—which shows the impossibility of a Euclidean construction for the triangle. More detailed references can be found in [1], [2]. We now prove the announced result. First, we derive some needed formulas. If $a, b, c$ are the side lengths, $m, n, p$ the angle bisector lengths and $s$ the semiperimeter of a triangle, then we have$$m=\frac{2}{b+c} \sqrt{b c s(s-a)}\tag1\label1$$with similar formulas for $n$ and $p$. We prove \eqref{1} by an area argument (see Figure 1).
ABaCDmcb
Figure 1
If $S(M N P)$ denotes the area of triangle $M N P$, then$$2 S(A B C)=2 S(A B D)+2 S(A C D)$$so that$$b c \sin (A)=b m \sin (A / 2)+c m \sin (A / 2)$$and hence$$m=\frac{b c}{b+c} \frac{\sin (A)}{\sin (A / 2)}=\frac{2 b c}{b+c} \cos (A / 2)=\frac{2 b c}{b+c} \sqrt{s(s-a) / b c} .$$One can easily check that$$\left[b+c \pm \frac{a(b-c)}{b+c}\right]^{2}=4 m^{2}+[a \pm(b-c)]^{2}\tag2\label2$$and \eqref{2} gives $$\tag3\label3 b+c=\sqrt{m^{2}+(s-b)^{2}}+\sqrt{m^{2}+(s-c)^{2}} .$$We get two related equalities for $c+a$ and $a+b$. With the substitutions$$\tag4\label4 x=s-a, \quad y=s-b, \quad z=s-c$$the relation \eqref{3} can be rewritten as$$\tag5\label5 x=\left[\sqrt{m^{2}+y^{2}}-y\right] / 2+\left[\sqrt{m^{2}+z^{2}}-z\right] / 2=f(y, m)+f(z, m)$$where $f(u, v)=\left[\sqrt{u^{2}+v^{2}}-u\right] / 2$. Given arbitrary positive real numbers $m, n, p$, let $F:[0, \infty)^{3} \rightarrow(0, \infty)^{3}$ be defined by$$F(x, y, z)=(f(y, m)+f(z, m), f(z, n)+f(x, n), f(x, p)+f(y, p)) .$$Taking \eqref{5} into account, we get$$\tag6\label6 F(x, y, z)=(x, y, z)$$whenever $x, y, z$ are as in \eqref{4} in a triangle with angle bisector lengths $m, n, p$. Conversely, if \eqref{6} holds, then in the triangle with sides lengths $y+z, z+x, x+y$ the equality \eqref{3} holds (together with the two analogous ones) so that $m$ must be given by \eqref{1}, in virtue of the monotonicity of the right side of \eqref{3} in the variable $m$. Hence the given problem is equivalent to the existence and uniqueness of a fixed point for $F$. EXISTENCE. Since $f(u, v) \in[0, v / 2]$ for nonnegative $u, v$, it follows that $F(K) \subseteq K$ where $K=[0, m] \times[0, n] \times[0, p]$. Note that $(0,0,0)$ is not a fixed point of $F$. Since $K$ is a convex compact set in $\mathbb{R}^{2}$ and $F$ is continuous, the existence follows by the Brouwer Fixed Point Theorem (see, for example, [3]). UNIQUENESS. For $v \neq 0, u \neq t$, and $D=\sqrt{u^{2}+v^{2}}+\sqrt{t^{2}+v^{2}}$, we have$$2|f(u, v)-f(t, v)|=|u-t|[1-(u+t) / D]<|u-t| \text {. }\tag7\label7$$For $(x, y, z) \neq\left(x', y', z'\right),$ \eqref{7} gives$$\begin{aligned} \left|F(x, y, z)-F\left(x', y', z'\right)\right| &<\frac12 \sqrt{\sum\left(\left|y-y'\right|+\left|z-z'\right|\right)^{2}} \\ & \leq\left\|(x, y, z)-\left(x', y', z'\right)\right\| \end{aligned}\tag8\label8$$where $\Sigma$ stands for the cyclic sum and $\|·\|$ denotes the Euclidean norm in $\Bbb R^3$. Uniqueness follows immediately from \eqref{8}. REFERENCES
  1. Nathan Altshiller Court, The problem of the three bisectors, Scripta Mathematica, XIX (June-September 1953), 218-219.
  2. O. Bottema, A theorem of F. J. Van Den Berg (1833-92), Nieuw Archief voor Wiskunde (3), XXVI (1978), 161-171.
  3. John Milnor, Analytic proofs of the 'Hairy Ball Theorem' and the Brouwer Fixed Point Theorem, this Monthly, 85 (1978), 521-524.
Department of Mathematics University of Bucharest Bucharest, Romania

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-7-25 00:16
Note that $(0,0,0)$ is not a fixed point of $F$.
证:
因为$f(y, m)+f(z, m)=\frac m2+\frac m2=m$,
所以$F(0,0,0)=(m,n,p)≠(0,0,0)$.
$$\frac12 \sqrt{\sum\left(\left|y-y'\right|+\left|z-z'\right|\right)^{2}}\leq\left\|(x, y, z)-\left(x', y', z'\right)\right\|$$
证:
由基本不等式,
$$\left(\left|y-y'\right|+\left|z-z'\right|\over2\right)^2\leq{\left|y-y'\right|^2+\left|z-z'\right|^2\over2}$$
轮换求和,
$$\sqrt{\sum\left(\left|y-y'\right|+\left|z-z'\right|\over2\right)^{2}}\leq\sqrt{\sum\left(x-x'\right)^{2}}$$
即$$\frac12 \sqrt{\sum\left(\left|y-y'\right|+\left|z-z'\right|\right)^{2}}\leq\left\|(x, y, z)-\left(x', y', z'\right)\right\|$$

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit